UNIVERSITY OF PUNE

F.Y.B.Sc. MATHEMATICS Question Bank

Practicals Based on Paper I

First Term: Alegebra

Practical No. 1 Sets and Functions

- 1. Let $A = \{a, b, c, d\}$. How many elements are there in the power set $\mathcal{P}(A)$? Hence write down $\mathcal{P}(A)$. How many relations are there on the set A?
- 2. Let $A = \{1, 2, 3, 4\}$. Write down all partitions of A. How many equivalence relations are defined on the set A? Determine the equivalence classes corresponding to each equivalence relation.
- 3. Let a function $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = \frac{4x-3}{5}$. Show that f is a bijection. Find the formula that defines inverse function f^{-1} .
- 4. Let the functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = x^2 + 3x + 1$ and g(x) = 2x 3. Find the formulae which define the composite functions $f \circ f, g \circ g, f \circ g$ and $g \circ f$. Is $f \circ g = g \circ f$? Find x for which $f \circ g(x) = g \circ f(x)$.

Practical No. 2 Divisibility in Integers

- 1. Show that the integers 3927 and 377 are relatively prime. Find the integers m and n such that 31 = m(3927) - n(377).
- 2. Find the values of integers x and y which satisfy 74 = 7469x + 2464y.
- 3. Show that $\frac{a(a^2+2)}{3}$ is an integer for all integers $a \ge 1$. (by using division algorithm).
- 4. Find all prime numbers which divide 50!.

Practical No. 3 Congruence Relation on Z

- 1. Show that $2^5 \equiv -9 \pmod{41}$ and hence prove that $41|2^{20}-1$.
- 2. Find the remainder when $111^{333} + 333^{111}$ is divided by 7.
- (i) Prepare addition table for Z₅. Write additive inverse of each element in Z₅. (ii) Prepare multiplication table for Z₈. Write multiplicative inverse of the elements of Z₈, which exists.
- 4. List all integers x with $-10 \le x \le 90$, which satisfy $x \equiv 7 \pmod{11}$.

Practical No. 4 Complex Numbers

- 1. Express the following complex numbers in polar form: (i) $z = \frac{-2}{1 + \sqrt{3}i}$ (ii) $z = \frac{-1 + 3i}{2 - i}$.
- 2. Using DeMoivre's theorem, prove the following:
 - (i) $\cos 3\theta = \cos^3 \theta 3\cos\theta \sin^2 \theta$ (ii) $\sin^7 \theta = \frac{1}{64} [35\sin\theta - 21\sin 3\theta + 7\sin 5\theta - \sin 7\theta]$
- 3. Describe the following regions geometrically:
 (i) |z − 1 + i| = 1.
 (ii) 0 ≤ arg z ≤ π/4.
- 4. Find all values of $(-8i)^{1/3}$.

Practical No. 5 Polynomials

- 1. Find the cubic polynomial $f(x) = a + bx + cx^2 + dx^3$ satisfying f(0) = 0, f(1) = 1, f(2) = 0, f(3) = 1.
- 2. Solve the equation $4x^3 24x^2 + 23x + 18 = 0$. Given that the roots are in arithmatic progression.
- 3. (i) Solve the equation 24x³ 14x² 63x + 45 = 0, one root being the double the other.
 (ii) Find the sum of the squares of the roots of the equation x³ 2x² + 3x 4 = 0.
- 4. (i) Find the g.c.d. of polynomials $x^3 1$ and $x^4 + x^3 + 2x^2 + x + 1$.

(ii) Consider the equation $x^4 - 5x - 6 = 0$. Find two integral solutions by trial and error method. Also find the other two solutions by using factor theorem.

Practical No. 6 Miscellaneous

- 1. (i) Give an example of a real valued function f, other than identity function such that
 - (a) $f \circ f = identity$ (b) $f \circ f = f$.
 - (ii) Find the domain of the following functions:

(a)
$$f(x) = \frac{x^2 - 3x - 1}{x - 2}$$
 (b) $f(x) = \sqrt{\sin 2x}$.

- 2. Define binary operation * on **Z** such that a * b = a + b ab. Check whether * is associative. Find the identity element with respect to *.
- 3. Calculate (a) $(-\bar{3})(\bar{4})^{-1}$ in \mathbb{Z}_7 (b) $(\bar{5})^{-1} + (\bar{27}) + (\bar{10} \bar{4})$ in \mathbb{Z}_{12} (c) $(\bar{12})^2 + \bar{5}(\bar{8}) - \bar{18}$ in \mathbb{Z}_{19} .
- 4. In \mathbf{Z}_{56} , find all nonzero pairs \bar{a} and \bar{b} , such that $\bar{a} \cdot \bar{b} = \bar{0}$.
- 5. Calculate (a) $\phi(14) + \phi(18)$ (b) $\phi(22) \phi(16)$, where ϕ is a Euler's phi-function.

Practicals Based on Paper II First Term: Calculus

Practical No. 7 Real Numbers

1. Find the solution set of the following inequality

$$2|x| + |x - 1| < 4, x \in \mathbb{R}$$

2. Find the supremum and infimum of the following sets if exist:

(a)
$$S = \{1 - \frac{1}{n}, n \in \mathbb{N}\}$$

(b) $S = \{1 - \frac{(-1)^n}{n}, n \in \mathbb{N}\}$
(c) $S = \{x^2 + x > 2, x \in \mathbb{R}\}$

- 3. Let a, b, c, d be real numbers satisfying 0 < a < b and c < d < 0. Give an example where ac < bd and one where bd < ac.
- 4. Let $K = \{s + t\sqrt{2}, s, t \in \mathbb{Q}\}$. Show that K satisfies the following:
 - (a) $x, y \in K$ then $x + y \in K$ and $xy \in K$.

(b) If
$$x \neq 0$$
 and $x \in K$ then $\frac{1}{x} \in K$.

Practical No. 8 Sequences

- 1. By using the definition show that the sequence $\{\frac{2n}{n+1}\}$ converges to 2. Also find N_0 if $\epsilon = 0.1$, 0.01.
- 2. A sequence $\{a_n\}$ is defined by $a_1 = 1$, $a_{n+1} = \sqrt{3a_n}$. Prove that $\{a_n\}$ is monotonic increasing and bounded. Also find it's limit.
- 3. Using subsequences show that the sequence $\{\cos n\pi\}$ is not convergent.
- 4. Check whether the following sequences are Cauchy or not.

(a)
$$a_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

(b) $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

Hence test their convergence.

Practical No. 9

Series

1. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n(n+3)}{(n+1)^2}.$

2. Discuss the convergence of
$$\sum_{n=1}^{\infty} \frac{n+5}{n(n+1)\sqrt{n+2}}$$

3. Discuss the convergence of
$$\sum_{n=1}^{\infty} e^{-n^2}$$
.

4. Discuss the convergence of
$$\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \frac{1.2.3.4}{3.5.7.9} + \cdots$$

Practical No. 10 Sequences and Series

- 1. If $a_n = \sqrt{n+1} \sqrt{n}$, $n \in \mathbb{N}$ then show that $\{a_n\}$ is convergent. Also find it's limit.
- 2. Find the limits of the following sequences :

(a)
$$(1 + \frac{1}{n})^{n+1}$$
.
(b) $(1 + \frac{1}{n})^{2n}$.
(c) $(1 + \frac{1}{n+1})^n$

3. Discuss the convergence of $\frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} + \cdots$

4. By using partial fractions show that $\sum_{n=0}^{\infty} \frac{1}{(\alpha+n)(\alpha+n+1)} = \frac{1}{\alpha}$ if $\alpha > 0$.

Practical No. 11 Limits

1. Evaluate $\lim_{x \to \infty} \left(\frac{x+6}{x+1}\right)^{x+4}$.

2. Using definition of a limit, prove that $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$.

3. Prove that $\lim_{x \to 0} \frac{x^2}{3x + |x|} = 0.$ 4. Show that $\lim_{x \to 0} \sin \frac{1}{x}$ does not exist but $\lim_{x \to 0} x \sin \frac{1}{x}$ exists.

Practical No. 12 Miscellaneous

- 1. Show that there exists atleast one irrational number between any two distinct real numbers.
- 2. Consider the series $1 1 + 2 2 + 3 3 + \cdots$. Let S_n be the sequence of partial sums. Find S_{2n} and S_{2n+1} . Hence show that the series is divergent.
- 3. If $\lim_{x\to 0} \frac{\sin 2x + a \sin x}{x^3}$ exists, find the value of a and also evaluate the limit.
- 4. Evaluate $\lim_{x \to \infty} \left(\frac{e^x e^{-x}}{e^x + e^{-x}} + x \tan^{-1} \frac{1}{x} \right).$
- 5. Let $a_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}$. Show that $\{a_n\}$ is monotone and bounded. Also show that it converges to 0.

Practicals Based on Paper I Second Term: Analytical Geometry

Practical No. 13 Analytical Geometry of Two Dimensions

- 1. Under the translation of coordinate axes, the expression $2x^2-3y^2+4y+5$ is transformed into $2x'^2-3y'^2+4x'-8y'+3$. Find the coordinates of new origin.
- 2. Transform the equation $11x^2+24xy+4y^2-20x-40y-5=0$ when origin shifted to (2, -1) and axes are rotated through an angle $\tan^{-1}(\frac{-4}{3})$.
- 3. Discuss the nature of the following conic and reduce it into standard (canonical) form. Also find centre, if exists:
 - (a) $9x^2 + 16y^2 54x + 64y + 1 = 0.$
 - (b) $2x^2 4xy y^2 + 20x 2y + 17 = 0.$
- 4. Discuss the nature of the following conic and find the centre, if exists: $4x^2 - 12xy + 9y^2 - 52x + 26y + 81 = 0$.

Practical No. 14 Analytical Geometry of Three Dimensions

- 1. Find direction cosines of the straight lines which satisfy the relations 2l + 2m n = 0, mn + nl + ml = 0.
- 2. (a) Find the equation of the plane passing (i)through the points (3, 5, 1), (2, 3, 0) and (0, 6, 0)(ii) through the point (2, 0, -1) and perpendicular to the line whose direction ratios are 3, 4, -2.

- (b) Find the equation of the plane through the line x + y 2z + 4 = 0 = 3x y + 2z 1 and parallel to the line with direction ratios 2, 3, -1.
- (c) Find the equation of the plane passing through the points (2, 3, -4) and (1, -1, 3) and perpendicular to yz-plane.
- 3. Find the equation of the perpendicular from the point (2, 4, -1)to the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$. Find the foot of the perpendicular.
- 4. Find the point where the line x + 3y z = 6, y z = 4meets the plane 2x + 2y + z = 0.

Practical No. 15 Sphere

- 1. Find the equation of the sphere passing through the points (4, -1, 2), (0, -2, 3), (1, -5, -1) and (2, 0, 1).
- 2. Find the length of the chord intercepted on the line $\frac{x+3}{4} = \frac{y+4}{3} = \frac{z-8}{-5}$ by the sphere $x^2 + y^2 + z^2 + 2x - 10y - 23 = 0.$
- 3. Find the equation of the sphere passing through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1, 2, 3).
- 4. Find the equations of the spheres that pass through the points (4, 1, 0), (2, -3, 4), (1, 0, 0) and touch the plane 2x + 2y z = 11.

Practical No. 16 System of Linear Equations(I)

1. Reduce the following matrices to the row echelon form and hence find the rank:

a)
$$\begin{pmatrix} 2 & 1 & 7 & 3 \\ 1 & 4 & 2 & 1 \\ 3 & 5 & 9 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 1 & 7 & 3 \\ 1 & 4 & 2 & 1 \\ 3 & 5 & 9 & 2 \end{pmatrix}$.
2. Let $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & \lambda - 2 & 0 \\ 0 & \lambda - 1 & \lambda + 2 \\ 0 & 0 & 3 \end{pmatrix}$. Find the value of λ for which rank of A is 3.

3. Solve the following system by Guassian elimination method. Find particular solution in each case:

(a)
$$x_1 + 2x_2 + x_3 + x_4 = 0;$$

 $3x_1 + 4x_4 = 2;$
 $x_1 - 4x_2 - 2x_3 - 4x_4 = 2.$
(b) $x - y + 2z - w = -1;$
 $2x + y - 2z - 2w = -2;$
 $-x + 2y - 4z + w = 1;$
 $3x - 3w = -3.$

4. Solve the following system by Guassian elimination method. Find particular solution in each case:

$$x - y + 2z - w = -1;$$

$$2x + y - 2z - 2w = -2;$$

$$-x + 2y - 4z + w = 1;$$

$$3x - 3w = -3.$$

Practical 17 System of Linear Equations (II)

1. Examine the consistency of the following system of equations. If the system is consistent, find the solution.

(a)
$$x_1 - 2x_2 + x_3 - x_4 = 1;$$

 $2x_1 - 3x_3 + x_4 = 2;$
 $4x_1 - x_2 + 2x_3 = -1;$
 $x_2 + x_3 + x_4 = 1.$
(b) $x_1 - 2x_2 + x_3 + 2x_4 = 1;$
 $x_1 + x_2 - x_3 + x_4 = 2;$
 $x_1 + x_2 - 5x_3 - x_4 = 3.$

2. Examine the consistency of the following system of equations. If the system is consistent, find the solution.

$$x_1 - x_2 = 3;$$

$$x_2 + x_3 = 5;$$

$$2x_1 + 3x_3 = 5;$$

$$2x_1 - 4x_2 = 3;$$

$$x_1 + x_2 + x_3 = 2.$$

3. Find the value of the λ such that the following system of equations has a

(i) unique solution (ii) no solution (iii) an infinite number of solutions:

$$\begin{split} \lambda x + y + z &= 1; \\ x + \lambda y + z &= 1; \\ x + y + \lambda z &= 1. \end{split}$$

4. Find the value of λ if the following system is consistent:

$$x_1 + 3x_2 + x_3 = 5;$$

$$3x_1 + 2x_2 - 4x_3 + 7x_4 = \lambda + 4;$$

$$x_1 + x_2 - x_3 + 2x_4 = \lambda - 1.$$

Practical No. 18 Miscellaneous

1. Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplaner. Also find the equation of the plane containing them.

- 2. Find the distance of point (2, -1, 1) from the plane x + y + z = 3 measured parallel to the line whose direction ratioes are 2, 3, -4.
- 3. Show that 2x 2y + z + 16 = 0 is a tangent plane to the sphere

 $x^2 + y^2 + z^2 + 2x - 4y + 2z - 3 = 0$

and find the point of the contact.

4. Reduce the following matrices to the row echelon form and hence find the rank:

$$\begin{pmatrix} 2 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 1 & 1 & 4 \end{pmatrix}.$$

5. Examine the consistency of the following system of equations. If the system is consistent, find the solution.

$$x_1 + x_2 + x_3 + x_4 = 1;$$

$$2x_1 - x_2 + x_3 - 2x_4 = 2;$$

$$3x_1 + 2x_2 - x_3 - x_4 = 3.$$

Practicals Based on Paper II Second Term: Calculus

Practical No. 19 Continuous Functions - I

- 1. (a) Give an example of two functions both discontinuous at 0, whose sum is continuous at 0.
 - (b) Give an example of two functions both discontinuous at 0, whose product is continuous at 0.
 - (c) Do there exist two functions both discontinuous at 0, whose sum as well as product is continuous at 0.
- 2. Let $f : [0, 1] \to \mathbb{R}$ be defined by f(x) = x, if x is rational = 1 - x, if x is irrational. Show that f is continuous only at $\frac{1}{2}$.
- 3. Let f: [0,1] → R be defined by
 f(x)= 0, if x is rational
 = 1, if x is irrational.
 Show that f is discontinuous at every point of R.
- 4. The function f is defined on [0,3] by $f(x) = x^2$, if $0 \le x < 1$ = 1 + x, if $1 \le x \le 2$ $= \frac{6}{x}$, if $2 < x \le 3$. Discuss the continuity of f on [0,3].

Practical No. 20 Continuous Functions - II

- 1. Let $f : [0,] \to \mathbb{R}$ be defined by f(x) = 0, if x = 0 $= \frac{x - |x|}{x}$, if $x \neq 0$. Discuss the continuity of f on \mathbb{R} .
- 2. Prove that $x = \cos x$ for some $x \in (0, \pi/2)$.
- 3. Prove that there exists a continuous one-one onto function $f : \mathbb{R} \to (-1, 1)$. Find f^{-1} . Is f^{-1} continuous?
- 4. Find two consecutive integers n, n+1 between which a real root of $x^3 + x^2 = 3$ lies.

Practical No. 21 Derivatives and Mean Value Theorems

- 1. Let the function $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = |x| + |x+1|. Determine whether f is a differntiable function. If so , find the derivative.
- 2. Let the function $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin(\frac{1}{x^2})$ if $x \neq 0$ and f(0) = 0. Show that f is differentiable for all $x \in \mathbb{R}$. Also show that the derivative f'(x) is not bounded on [-1,1].
- 3. Show that for 0 < a < b,

$$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}.$$

4. (a) Find c, of Lagrange's Mean Value Theorem for $f(x) = x^3 - 3x$ on [-1,1].

- (b) If $\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_{n-1}}{2} + a_n = 0$, then show that the equation $a_0 x^n + a_1 x^{n-1} \dots + a_n = 0$ has a root in (0, 1).
- (c) Using $f(x) = (4 x) \log x$, show that $x \log x = 4 x$, for some $x \in (1, 4)$.
- (d) Find θ of Cauchy's Mean Value Theorem for $f(x) = \sin x$, $g(x) = \cos x$ in $[0, \frac{\pi}{2}]$.

Practical 22 Successive Differentiation

- 1. Find n^{th} derivative of the following functions:
 - (a) $y = \frac{1}{6x^2 + 11x + 3}$, (b) $y = e^x \cos x$,
 - (c) $y = x^2 \log x$.
 - (d) $y = \tan^{-1}(\frac{2x}{1-x^2}).$
- 2. By using Leibnitz's theorem prove that if $y^{\frac{1}{m}} + y^{\frac{-1}{m}} = 2x$, then $(x^2 - 1)y_{n+2} + (2x + 1)xy_{n+1} + (x^2 - m^2)y_m = 0$.
- 3. If $y = \sin^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$ then show that $(1-x^2)y_{n+2} (2n+3)xy_{n+1} (n+1)^2y_n = 0.$
- 4. If $y = \cos(m\cos^{-1}x)$ then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (m^2 - x^2)y_n = 0.$

Practical 23 Taylor's Theorem and L'Hospital's Rule

- 1. (a) Use Taylor's series to expand the function $\frac{\log(1+x)}{1+x}$ in ascending powers of x up to first four terms.
 - (b) Use Taylor's series to expand the function log(sin(x+h)) in ascending powers of x up to first three terms.
- 2. Use Maclaurin's series to expand the following functions
 - (a) $\log(1 + \sin x)$,
 - (b) $\sin^{-1} x$,
 - (c) $e^{\sin^{-1}x}$.
- 3. Find the value of a + b such that

$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1.$$

4. Evaluate the following limits:

(a)
$$\lim_{x \to 0} \log(\tan x)^{\tan 2x}$$
,
(b) $\lim_{x \to 0} \left(\frac{1}{2x^2} - \frac{1}{x \tan 2x}\right)$,
(c) $\lim_{x \to 0} (\cos x)^{\frac{1}{2x^2}}$.

Practical No. 24 Miscellaneous

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ defined by f(x+y) = f(x) + f(y), f(xy) = f(x)f(y). Show that
 - (a) f(0) = 0.
 - (b) f(1) = 1 or f(1) = 0.
 - (c) If f(1) = 0 then $f \equiv 0$.
 - (d) If f(1) = 1 then show that f is identity function on \mathbb{Q} .
 - (e) If f(1) = 1 then show that f(x) > 0 if x > 0. Further, show that f is monotonically increasing function.
 - (f) Is f a continuous function?
 - (g) Can you determine f?
- 2. Prove that $3x = 2^x$ for some $x \in (0, 1)$.
- 3. Use Mean Value Theorem to prove that, for x > 0,

$$\frac{x-1}{x} < \ln x < (x-1).$$

- 4. If $x = \tan(\log y)$ then show that $(x^2 + 1)y_{n+1} + (2nx - 1)y_n + n(n-1)y_{n-1} = 0.$
- 5. Find a, if $\lim_{x\to 0} \frac{(\sin 2x + a \sin x)}{x^3} = 1$, is finite.