UNIVERSITY OF PUNE
 F.Y.B.Sc. MATHEMATICS Question Bank

 Practicals Based on Paper I

 Practicals Based on Paper I
 First Term: Alegebra

Practical No. 1
 Sets and Functions

1. Let $A=\{a, b, c, d\}$. How many elements are there in the power set $\mathcal{P}(A)$? Hence write down $\mathcal{P}(A)$. How many relations are there on the set A ?
2. Let $A=\{1,2,3,4\}$. Write down all partitions of A. How many equivalence relations are defined on the set A ? Determine the equivalence classes corresponding to each equivalence relation.
3. Let a function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=\frac{4 x-3}{5}$. Show that f is a bijection. Find the formula that defines inverse function f^{-1}.
4. Let the functions $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=x^{2}+3 x+1$ and $g(x)=2 x-3$. Find the formulae which define the composite functions $f \circ f, g \circ g, f \circ g$ and $g \circ f$. Is $f \circ g=g \circ f$? Find x for which $f \circ g(x)=g \circ f(x)$.

Practical No. 2

Divisibility in Integers

1. Show that the integers 3927 and 377 are relatively prime. Find the integers m and n such that $31=m(3927)-n(377)$.

2 . Find the values of integers x and y which satisfy $74=7469 x+2464 y$.
3. Show that $\frac{a\left(a^{2}+2\right)}{3}$ is an integer for all integers $a \geq 1$. (by using division algorithm).
4. Find all prime numbers which divide 50 !.

Practical No. 3 Congruence Relation on Z

1. Show that $2^{5} \equiv-9(\bmod 41)$ and hence prove that $41 \mid 2^{20}-1$.
2. Find the remainder when $111^{333}+333^{111}$ is divided by 7 .
3. (i) Prepare addition table for \mathbf{Z}_{5}. Write additive inverse of each element in \mathbf{Z}_{5}. (ii) Prepare multiplication table for \mathbf{Z}_{8}. Write multiplicative inverse of the elements of \mathbf{Z}_{8}, which exists.
4. List all integers x with $-10 \leq x \leq 90$, which satisfy $x \equiv 7(\bmod 11)$.

Practical No. 4

Complex Numbers

1. Express the following complex numbers in polar form:
(i) $z=\frac{-2}{1+\sqrt{3} i}$
(ii) $z=\frac{-1+3 i}{2-i}$.
2. Using DeMoivre's theorem, prove the following:
(i) $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$
(ii) $\sin ^{7} \theta=\frac{1}{64}[35 \sin \theta-21 \sin 3 \theta+7 \sin 5 \theta-\sin 7 \theta]$
3. Describe the following regions geometrically:
(i) $|z-1+i|=1$.
(ii) $0 \leq \arg z \leq \pi / 4$.
4. Find all values of $(-8 i)^{1 / 3}$.

Practical No. 5
 Polynomials

1. Find the cubic polynomial $f(x)=a+b x+c x^{2}+d x^{3}$ satisfying $f(0)=0, f(1)=1, f(2)=0, f(3)=1$.
2. Solve the equation $4 x^{3}-24 x^{2}+23 x+18=0$. Given that the roots are in arithmatic progression.
3. (i) Solve the equation $24 x^{3}-14 x^{2}-63 x+45=0$, one root being the double the other.
(ii) Find the sum of the squares of the roots of the equation $x^{3}-2 x^{2}+3 x-4=0$.
4. (i) Find the g.c.d. of polynomials $x^{3}-1$ and $x^{4}+x^{3}+2 x^{2}+$ $x+1$.
(ii) Consider the equation $x^{4}-5 x-6=0$. Find two integral solutions by trial and error method. Also find the other two solutions by using factor theorem.

Practical No. 6 Miscellaneous

1. (i) Give an example of a real valued function f, other than identity function such that
(a) $f \circ f=$ identity (b) $f \circ f=f$.
(ii) Find the domain of the following functions:
(a) $f(x)=\frac{x^{2}-3 x-1}{x-2}$
(b) $f(x)=\sqrt{\sin 2 x}$.
2. Define binary operation $*$ on \mathbf{Z} such that $a * b=a+b-a b$. Check whether $*$ is associative. Find the identity element with respect to $*$.
3. Calculate (a) $(-\overline{3})(\overline{4})^{-1}$ in $\mathbf{Z}_{7} \quad$ (b) $(\overline{5})^{-1}+(\overline{27})+(\overline{10}-\overline{4})$ in \mathbf{Z}_{12}
(c) $(\overline{12})^{2}+\overline{5}(\overline{8})-\overline{18}$ in \mathbf{Z}_{19}.
4. In \mathbf{Z}_{56}, find all nonzero pairs \bar{a} and \bar{b}, such that $\bar{a} \cdot \bar{b}=\overline{0}$.
5. Calculate (a) $\phi(14)+\phi(18)$ (b) $\phi(22)-\phi(16)$, where ϕ is a Euler's phi-function.

Practicals Based on Paper II
 First Term: Calculus

Practical No. 7
 Real Numbers

1. Find the solution set of the following inequality

$$
2|x|+|x-1|<4, x \in \mathbb{R} .
$$

2. Find the supremum and infimum of the following sets if exist:
(a) $S=\left\{1-\frac{1}{n}, n \in \mathbb{N}\right\}$
(b) $S=\left\{1-\frac{(-1)^{n}}{n}, n \in \mathbb{N}\right\}$
(c) $S=\left\{x^{2}+x>2, x \in \mathbb{R}\right\}$
3. Let a, b, c, d be real numbers satisfying $0<a<b$ and $c<d<0$. Give an example where $a c<b d$ and one where $b d<a c$.
4. Let $K=\{s+t \sqrt{2}, s, t \in \mathbb{Q}\}$. Show that K satisfies the following:
(a) $x, y \in K$ then $x+y \in K$ and $x y \in K$.
(b) If $x \neq 0$ and $x \in K$ then $\frac{1}{x} \in K$.

Practical No. 8

Sequences

1. By using the definition show that the sequence $\left\{\frac{2 n}{n+1}\right\}$ converges to 2 . Also find N_{0} if $\epsilon=0.1,0.01$.
2. A sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1, a_{n+1}=\sqrt{3 a_{n}}$. Prove that $\left\{a_{n}\right\}$ is monotonic increasing and bounded. Also find it's limit.
3. Using subsequences show that the sequence $\{\cos n \pi\}$ is not convergent.
4. Check whether the following sequences are Cauchy or not.
(a) $a_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}$.
(b) $a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.

Hence test their convergence.

Practical No. 9
 Series

1. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n(n+3)}{(n+1)^{2}}$.
2. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n+5}{n(n+1) \sqrt{n+2}}$.
3. Discuss the convergence of $\sum_{n=1}^{\infty} e^{-n^{2}}$.
4. Discuss the convergence of $\frac{1}{3}+\frac{1.2}{3 \cdot 5}+\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{3 \cdot 5 \cdot 7 \cdot 9}+\cdots$.

Practical No. 10

Sequences and Series

1. If $a_{n}=\sqrt{n+1}-\sqrt{n}, n \in \mathbb{N}$ then show that $\left\{a_{n}\right\}$ is convergent. Also find it's limit.
2. Find the limits of the following sequences :
(a) $\left(1+\frac{1}{n}\right)^{n+1}$.
(b) $\left(1+\frac{1}{n}\right)^{2 n}$.
(c) $\left(1+\frac{1}{n+1}\right)^{n}$.
3. Discuss the convergence of $\frac{1^{2} \cdot 2^{2}}{1!}+\frac{2^{2} \cdot 3^{2}}{2!}+\frac{3^{2} \cdot 4^{2}}{3!}+\cdots$.
4. By using partial fractions show that $\sum_{n=0}^{\infty} \frac{1}{(\alpha+n)(\alpha+n+1)}=\frac{1}{\alpha}$ if $\alpha>0$.

Practical No. 11
 Limits

1. Evaluate $\lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}$.
2. Using definition of a limit, prove that $\lim _{x \rightarrow 1} \frac{x}{1+x}=\frac{1}{2}$.
3. Prove that $\lim _{x \rightarrow 0} \frac{x^{2}}{3 x+|x|}=0$.
4. Show that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist but $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$ exists.

Practical No. 12

Miscellaneous

1. Show that there exists atleast one irrational number between any two distinct real numbers.
2. Consider the series $1-1+2-2+3-3+\cdots$. Let S_{n} be the sequence of partial sums. Find $S_{2 n}$ and $S_{2 n+1}$. Hence show that the series is divergent.
3. If $\lim _{x \rightarrow 0} \frac{\sin 2 x+a \sin x}{x^{3}}$ exists, find the value of a and also evaluate the limit.
4. Evaluate $\lim _{x \rightarrow \infty}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+x \tan ^{-1} \frac{1}{x}\right)$.
5. Let $a_{n}=\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\cdots+\frac{1}{(n+n)^{2}}$. Show that $\left\{a_{n}\right\}$ is monotone and bounded. Also show that it converges to 0 .

Practicals Based on Paper I Second Term: Analytical Geometry

Practical No. 13
 Analytical Geometry of Two Dimensions

1. Under the translation of coordinate axes, the expression $2 x^{2}-3 y^{2}+4 y+5$ is transformed into $2 x^{\prime 2}-3 y^{\prime 2}+4 x^{\prime}-8 y^{\prime}+3$. Find the coordinates of new origin.
2. Transform the equation $11 x^{2}+24 x y+4 y^{2}-20 x-40 y-5=0$ when origin shifted to $(2,-1)$ and axes are rotated through an angle $\tan ^{-1}\left(\frac{-4}{3}\right)$.
3. Discuss the nature of the following conic and reduce it into standard (canonical) form. Also find centre, if exists:
(a) $9 x^{2}+16 y^{2}-54 x+64 y+1=0$.
(b) $2 x^{2}-4 x y-y^{2}+20 x-2 y+17=0$.
4. Discuss the nature of the following conic and find the centre, if exists: $4 x^{2}-12 x y+9 y^{2}-52 x+26 y+81=0$.

Practical No. 14

Analytical Geometry of Three Dimensions

1. Find direction cosines of the straight lines which satisfy the relations $2 l+2 m-n=0, m n+n l+m l=0$.
2. (a) Find the equation of the plane passing (i)through the points $(3,5,1),(2,3,0)$ and $(0,6,0)($ ii $)$ through the point $(2,0,-1)$ and perpendicular to the line whose direction ratios are $3,4,-2$.
(b) Find the equation of the plane through the line $x+y-$ $2 z+4=0=3 x-y+2 z-1$ and parallel to the line with direction ratioes $2,3,-1$.
(c) Find the equation of the plane passsing through the points $(2,3,-4)$ and $(1,-1,3)$ and perpendicular to yzplane.
3. Find the equation of the perpendicular from the point $(2,4,-1)$ to the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$. Find the foot of the perpendicular.
4. Find the point where the line $x+3 y-z=6, y-z=4$ meets the plane $2 x+2 y+z=0$.

Practical No. 15
 Sphere

1. Find the equation of the sphere passing through the points $(4,-1,2),(0,-2,3),(1,-5,-1)$ and $(2,0,1)$.
2. Find the length of the chord intercepted on the line $\frac{x+3}{4}=\frac{y+4}{3}=\frac{z-8}{-5}$ by the sphere $x^{2}+y^{2}+z^{2}+2 x-10 y-23=0$.
3. Find the equation of the sphere passing through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the point $(1,2,3)$.
4. Find the equations of the spheres that pass through the points $(4,1,0),(2,-3,4),(1,0,0)$ and touch the plane $2 x+2 y-z=11$.

Practical No. 16

System of Linear Equations(I)

1. Reduce the following matrices to the row echelon form and hence find the rank:
а) $\left(\begin{array}{llll}2 & 1 & 7 & 3 \\ 1 & 4 & 2 & 1 \\ 3 & 5 & 9 & 2\end{array}\right)$
b) $\left(\begin{array}{llll}2 & 1 & 7 & 3 \\ 1 & 4 & 2 & 1 \\ 3 & 5 & 9 & 2\end{array}\right)$.
2. Let $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & \lambda-2 & 0 \\ 0 & \lambda-1 & \lambda+2 \\ 0 & 0 & 3\end{array}\right)$. Find the value of λ for which rank of A is 3 .
3. Solve the following system by Guassian elimination method. Find particular solution in each case:

$$
\text { (a) } \begin{aligned}
\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4} & =0 ; \\
3 x_{1}+4 x_{4} & =2 ; \\
x_{1}-4 x_{2}-2 x_{3}-4 x_{4} & =2 . \\
\text { (b) } \mathrm{x}-\mathrm{y}+2 \mathrm{z}-\mathrm{w} & =-1 ; \\
2 x+y-2 z-2 w & =-2 ; \\
-x+2 y-4 z+w & =1 ; \\
3 x-3 w & =-3 .
\end{aligned}
$$

4. Solve the following system by Guassian elimination method. Find particular solution in each case:

$$
\begin{aligned}
x-y+2 z-w & =-1 ; \\
2 x+y-2 z-2 w & =-2 ; \\
-x+2 y-4 z+w & =1 ; \\
3 x-3 w & =-3 .
\end{aligned}
$$

Practical 17
 System of Linear Equations (II)

1. Examine the consistency of the following system of equations. If the system is consistent, find the solution.

$$
\text { (a) } \begin{array}{rrr}
x_{1}-2 x_{2}+x_{3}-x_{4}=1 ; & \text { (b) } \begin{aligned}
x_{1}-2 x_{2}+x_{3}+2 x_{4} & =1 ; \\
2 x_{1}-3 x_{3}+x_{4} & =2 ; \\
4 x_{1}-x_{2}+2 x_{3} & =-1 ;
\end{aligned} & x_{1}+x_{2}-x_{3}+x_{4}=2 ; \\
x_{2}+x_{3}+x_{4}=1 . & x_{1}+x_{2}-5 x_{3}-x_{4}=3 .
\end{array}
$$

2. Examine the consistency of the following system of equations. If the system is consistent, find the solution.

$$
\begin{aligned}
x_{1}-x_{2} & =3 ; \\
x_{2}+x_{3} & =5 ; \\
2 x_{1}+3 x_{3} & =5 ; \\
2 x_{1}-4 x_{2} & =3 ; \\
x_{1}+x_{2}+x_{3} & =2 .
\end{aligned}
$$

3. Find the value of the λ such that the following system of equations has a
(i) unique solution (ii) no solution (iii) an infinite number of solutions:
$\lambda x+y+z=1 ;$
$x+\lambda y+z=1 ;$
$x+y+\lambda z=1$.
4. Find the value of λ if the following system is consistent:

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =5 ; \\
3 x_{1}+2 x_{2}-4 x_{3}+7 x_{4} & =\lambda+4 ; \\
x_{1}+x_{2}-x_{3}+2 x_{4} & =\lambda-1 .
\end{aligned}
$$

Practical No. 18

Miscellaneous

1. Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=$ $\frac{y-3}{4}=\frac{z-4}{5}$ are coplaner. Also find the equation of the plane containing them.
2. Find the distance of point $(2,-1,1)$ from the plane $x+y+$ $z=3$ measured parallel to the line whose direction ratioes are $2,3,-4$.
3. Show that $2 x-2 y+z+16=0$ is a tangent plane to the sphere

$$
x^{2}+y^{2}+z^{2}+2 x-4 y+2 z-3=0
$$

and find the point of the contact.
4. Reduce the following matrices to the row echelon form and hence find the rank:

$$
\left(\begin{array}{llll}
2 & 1 & 2 & 2 \\
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 \\
3 & 1 & 1 & 4
\end{array}\right) .
$$

5. Examine the consistency of the following system of equations. If the system is consistent, find the solution.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
2 x_{1}-x_{2}+x_{3}-2 x_{4} & =2 \\
3 x_{1}+2 x_{2}-x_{3}-x_{4} & =3
\end{aligned}
$$

Practicals Based on Paper II
 Second Term: Calculus

Practical No. 19
 Continuous Functions - I

1. (a) Give an example of two functions both discontinuous at 0 , whose sum is continuous at 0 .
(b) Give an example of two functions both discontinuous at 0 , whose product is continuous at 0 .
(c) Do there exist two functions both discontinuous at 0 , whose sum as well as product is continuous at 0 .
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by
$f(x)=x$, if x is rational
$=1-x$, if x is irrational.
Show that f is continuous only at $\frac{1}{2}$.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by
$f(x)=0$, if x is rational
$=1$, if x is irrational.
Show that f is discontinuous at every point of \mathbb{R}.
4. The function f is defined on $[0,3]$ by

$$
\begin{aligned}
& f(x)=x^{2}, \text { if } 0 \leq x<1 \\
& =1+x, \text { if } 1 \leq x \leq 2 \\
& =\frac{6}{x}, \text { if } 2<x \leq 3 .
\end{aligned}
$$

Discuss the continuity of f on $[0,3]$.

Practical No. 20
 Continuous Functions - II

1. Let $f:[0,] \rightarrow \mathbb{R}$ be defined by $f(x)=0$, if $x=0$
$=\frac{x-|x|}{x}$, if $x \neq 0$.
Discuss the continuity of f on \mathbb{R}.
2. Prove that $x=\cos x$ for some $x \in(0, \pi / 2)$.
3. Prove that there exists a continuous one-one onto function $f: \mathbb{R} \rightarrow(-1,1)$. Find f^{-1}. Is f^{-1} continuous?
4. Find two consecutive integers $n, n+1$ between which a real root of $x^{3}+x^{2}=3$ lies.

Practical No. 21

Derivatives and Mean Value Theorems

1. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=|x|+|x+1|$. Determine whether f is a differntiable function. If so , find the derivative.
2. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2} \sin \left(\frac{1}{x^{2}}\right.$ if $x \neq 0$ and $f(0)=0$. Show that f is differentiable for all $x \in \mathbb{R}$. Also show that the derivative $f^{\prime}(x)$ is not bounded on $[-1,1]$.
3. Show that for $0<a<b$,

$$
\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}} .
$$

4. (a) Find c, of Lagrange's Mean Value Theorem for $f(x)=$ $x^{3}-3 x$ on $[-1,1]$.
(b) If $\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\cdots+\frac{a_{n-1}}{2}+a_{n}=0$, than show that the equation $a_{0} x^{n}+a_{1} x^{n-1} \cdots+a_{n}=0$ has a root in $(0,1)$.
(c) Using $f(x)=(4-x) \log x$, show that $x \log x=4-x$, for some $x \in(1,4)$.
(d) Find θ of Cauchy's Mean Value Theorem for $f(x)=$ $\sin x, g(x)=\cos x$ in $\left[0, \frac{\pi}{2}\right]$.

Practical 22

Successive Differentiation

1. Find $n^{\text {th }}$ derivative of the following functions:
(a) $y=\frac{1}{6 x^{2}+11 x+3}$,
(b) $y=e^{x} \cos x$,
(c) $y=x^{2} \log x$,
(d) $y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$.
2. By using Leibnitz's theorem prove that if $y^{\frac{1}{m}}+y^{\frac{-1}{m}}=2 x$, then $\left(x^{2}-1\right) y_{n+2}+(2 x+1) x y_{n+1}+\left(x^{2}-m^{2}\right) y_{m}=0$.
3. If $y=\sin ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$ then show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2} y_{n}=0 .
$$

4. If $y=\cos \left(m \cos ^{-1} x\right)$ then show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(m^{2}-x^{2}\right) y_{n}=0$.

Practical 23
 Taylor's Theorem and L'Hospital's Rule

1. (a) Use Taylor's series to expand the function $\frac{\log (1+x)}{1+x}$ in ascending powers of x up to first four terms.
(b) Use Taylor's series to expand the function
$\log (\sin (x+h))$ in ascending powers of x up to first three terms.
2. Use Maclaurin's series to expand the following functions
(a) $\log (1+\sin x)$,
(b) $\sin ^{-1} x$,
(c) $e^{\sin ^{-1} x}$.
3. Find the value of $a+b$ such that

$$
\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}=1 .
$$

4. Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \log (\tan x)^{\tan 2 x}$,
(b) $\lim _{x \rightarrow 0}\left(\frac{1}{2 x^{2}}-\frac{1}{x \tan 2 x}\right)$,
(c) $\lim _{x \rightarrow 0}(\cos x) \frac{1}{2 x^{2}}$.

Practical No. 24

Miscellaneous

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x+y)=f(x)+f(y), f(x y)=$ $f(x) f(y)$. Show that
(a) $f(0)=0$.
(b) $f(1)=1$ or $f(1)=0$.
(c) If $f(1)=0$ then $f \equiv 0$.
(d) If $f(1)=1$ then show that f is identity function on \mathbb{Q}.
(e) If $f(1)=1$ then show that $f(x)>0$ if $x>0$. Further, show that f is monotonically increasing function.
(f) Is f a continuous function?
(g) Can you determine f ?
2. Prove that $3 x=2^{x}$ for some $x \in(0,1)$.
3. Use Mean Value Theorem to prove that, for $x>0$,

$$
\frac{x-1}{x}<\ln x<(x-1)
$$

4. If $x=\tan (\log y)$ then show that

$$
\left(x^{2}+1\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0 .
$$

5. Find a, if $\lim _{x \rightarrow 0} \frac{(\sin 2 x+a \sin x)}{x^{3}}=1$, is finite.
