B.Sc. Biotechnology Syllabus (2008-09) Total Marks = 3100 [1200 (F.Y.) + 1000 (S.Y.) + 900 (T.Y.)] <u>Course structure</u> First Year

Course	Title of the Course	Theory/	Marks	Lecture/
Code		Practical		Practical
Bb- 101	Fundamentals of Chemistry	Theory	100	90L
Bb- 102	Fundamentals of Physics	Theory	100	90L
Bb- 103	Basic Biosciences	Theory	100	90L
Bb- 104	Mathematics & Statistical	Theory	100	90L
	Methods for Biologists			
Bb- 105	Fundamentals of Biological	Theory	100	90L
	Chemistry			
Bb- 106	Biophysics & Instrumentation	Theory	100	90L
Bb- 107	Microbiology	Theory	100	90L
Bb- 108	Use of Computers	Theory	100	90L
Bb- 109	Techniques in Chemistry &	Practical	100	30 P
	Biochemistry			
Bb- 110	Techniques in Physics,	Practical	100	30 P
	Biophysics & Instrumentation			
Bb- 111	Laboratory Exercises in	Practical	100	30 P
	Biosciences			
Bb- 112	Quantitative Methods in	Practical	100	30 P
	Biology			

Second Year

Course	Title of the Course	Theory/	Marks	Lecture/
code		Practical		Practical
	Semester I			
Bb- 211	Genetics & Immunology	Theory	100	90L
Bb- 212	Cell Biology	Theory	100	90L
Bb- 213	Molecular Biology	Theory	100	90L
Bb- 214	Techniques in Molecular	Practical	100	30P
	Biology			
Bb- 215	Exercises in Cell Biology &	Practical	100	30P
	Genetics			
	Semester II			
Bb- 221	Environmental Biology and	Theory	100	90L
	Biotechnology			
Bb- 222	Plant & Animal Tissue Culture	Theory	100	90L
Bb- 223	English	Theory	100	90L
Bb- 224	Metabolic Pathways	Theory	100	90L
Bb- 225	Tissue Culture Techniques	Practical	100	30P

Third Year

Course	Title of the course	Theory/	Marks	Lecture/
Code		Practical		Practical
	Semester III			
Bb- 331	Microbial Biotechnology	Theory	100	90L
Bb- 332	Animal & Plant Development	Theory	100	90L
Bb- 333	Biodiversity & Systematics	Theory	100	90L
Bb- 334	Developmental Biology &	Practical	100	30P
	Microbial Biotechnology			
Bb- 335	Project (to be continued in		50	
	semester IV)			
	Semester IV			
Bb-341	Large scale Manufacturing	Theory	100	90L
	process			
Bb- 342	Biotechnology in Agriculture &	Theory	100	90L
	Health			
Bb- 343	Recombinant DNA Technology	Theory	100	90L
Bb- 344	Techniques in Genetic	Practical	100	30P
	Engineering			
Bb- 345	Project		50	

N.B. For assessment of each course, 80% will be for Semester-end examination and 20% for internal assessment. Internal assessment will be continuous throughout the semester, and the marks should be submitted to the Examination section before the commencement of Semester-end examination.

B.Sc. Biotechnology Detailed Syllabus (2008-09) First Year

Bb- 101 Fundamentals of Chemistry

First Term

Sr.	No.	Торіс	Lecture
1.		Gaseous State: Kinetic theory of gases, and deviation of kinetic gas equation, Deduction of gas laws such as Boyl's law, Charle's law, Graham's law of diffusion. Avogadro's principle, velocity of gas molecules, kinetic energy of translational motion. Dalton's law of partial pressure.	3
2.		Chemical Kinetics – Order-molecularity. First and second order-nth order rate equation, temp dependence of rate of reactions, collision theory.	7
3.		Colligative properties; lowering of vapour pressure of solvent, elevation of boiling point, freezing point lowering of solutions, Osmosis and osmotic pressure, relation of osmotic and vapour pressure, Van't Hoff equation for osmotic pressure. Electrolytes, Arrhenius theory for dissociation of electrolytes, Debye Huckel theory of inter- ionic attractions.	10
4.		Phase Rule: Gibbs phase rule, One component/two component systems, determination of solid liquid equilibria, determinature of nature of solid phases, Classification of two-component solid-liquid eqilibrium, simple eutectic diagram.	13
5.		Ionic equilibrium: Electrolytic conductance, Faraday's Law of electrolysis, transference and transference numbers, variation of conductance with concentration, effect on infinite dilution and other factors on conductance, inter- ionic attraction theory of conductance, conductometric titration, activity coefficients and their determination, Debye-Huckel theory of activity coefficients, ionization constants of weak acids and bases, pH, buffers, solubility products, salt effects and solubility.	12
Sec	ond Te	erm	
6.	Princi electr therm electr reduc poten deterr	iples of electrochemistry: EMF and its measurements, single ode potentials, calculation of single electrode potentials, odynamics of electrode potentials, classification of odes, amalgam, gas, metal/insoluble salt and oxidation- tion electrodes, electrochemical cells, the junction tials, solubility product and EMF potentiometric mination of pH, potentiometric titrations.	20

7	Basics of stereochemistry:	10
	1. Representation of molecules	
	a. Projection formulae.	
	b. Sawhaorse Newman, Fisher	
	2. Conformation isomerism	
	a. Conformation of isomers	
	b. 'C' rotation about C-C bond, Propane, Ethane,	
	Butane.	
	c. Relative stability	
	3. Optical Isomerism	
	a. Optical isomers	
	b. Isomeric number and tetrahedral carbon atom	
	c. Reduction of optical activity	
	d. Plane of activity –simple plane, Centre of	
	symmetry, Alternating axcess of symmetry,	
	Properties, Recemic modification	
	4. Geometrical isomerism	
	a. Open chain molecule	
	b. Condition of geometric isomer	
	c. Cis-trans and E-Z nomenclature]	
	Physical and chemical properties of geometric isomerism.	
8.	Chemical bonding-various theories, covalent, hydrogen bondings	6
	and other weak interactions	
	Atomic chemistry-electromagnetism. Principles of oxidation-	
	reduction,	
9	Basics in organic chemistry-	9
	Nomenclature, Hydrocarbons, alcohols, amines, alkyl indices	
	Conformation of alkanes; alkyl halides, alcohols, ethers, amines	
	Cycloaikanes.	
	Oxidations, reductions, eliminations, addition and substitution	
	reactions	
	Ouantitative structure activity relationships (OSAR)	

- University General Chemistry by C.N. R. Rao, Macmillan 1
- Principles of Physical Chemistry, 4th edition by S.H. Marron and C.F. Prutton 2
- Essentials of Physical Chemistry by B.S. Bahel and G.D. Tuli 3
- 4 College Chemistry by Linus Pauling
- Concise Inorganic Chemistry by J. D. Lee 5th Edition Basic Inorganic Chemistry by Cotton and Wilkinson 5
- 6
- Organic Chemistry, 5th Edition by Marrison Prentice Hall of India Pyt. Ltd. Boyd, New Delhi 7
- Guide book to Mechanism in Organic Chemistry by Peper Sykes, 6th Edition, Orient Longman 8
- 9 Organic Chemistry by I.L. Finar, Volume-II, 5th Edition
- An introduction to Electrochemistry by Samuel Glasstene 10
- The elements of Physical Chemistry by P.W. Atkins 11
- 12 Physical Chemistry for biological sciences by Raymond Chang (University science)
- 13 Physical Chemistry by David Ball

<u>Bb- 102 Fundamentals of Physics</u> <u>First Term</u>

Sr. No	Торіс	Lecture
1.	Interrelationship between Physics and Life sciences	2
2.	MeasurementsPhysics quantities, standards and units:Length: radius of proton to size to astronomicaldistances. Mass: atomic mass unit to mass of earth.Time: time for fast elementary particle to pass throughnucleus to age of earth. Electric current.Thermodynamic temperature. Amount of substance.Luminous intensity.International systems and units: Units used to measurephysical quantities and their inter-conversion.	6
3.	Elasticity Stress and strain in solids, Hook's law, Stress-strain curves, Limit of elasticity. Relevance of elasticity to life sciences	3
4.	Fluid Statics Fluids: Definition, Pressure and Density. The variation of pressure in a fluid at rest. Pascal's Principle. Measurement of pressure. Various units of pressure and their inter-conversion.	6
5.	Fluid Dynamics (Viscosity) Streamline and turbulent flow (definition and explanation). Equation of continuity. Flow of liquids through capillaries. Poiseulles equation: Derivations and physical significance. Reynolds number: Derivation and physical significance. Concept of pressure energy. Bernoulli's theorem and its applications- Venturi meter and Pitot's tube. Viscosity estimation by Oswald's viscometer. Relevance to life sciences.	10
6.	Surface tension Surface tension and surface energy: Definition, concept and derivation. Capillary action. Angle of contact. Wettability. Temperature dependence of surface tension. Relevance to life sciences and applications.	8
7	Sound waves : Types of waves (Longitudinal and transverse wave). Principles of superposition. Audible, ultrasonic and infrasonic waves. Vibrating systems and source of sound. Beats. The Doppler effect. Applications in life sciences.	10

	Second Term	
8.	Heat A form of energy. Quantity of heat and specific heat. Molar heat capacity of solid. Concept of temperature. Thermal equilibrium – zeroth law of thermodynamics. Measuring temperature. International practical temperature scale.	5
9.	Thermodynamics and real gases:Mechanical equivalent of heat. Heat and work. First law of thermodynamics: Mathematical form and limitations, applications. Indicator diagram and concept of cyclic process. Second law of thermodynamics. Concept of entropy with examples. Carnot cycle and its efficiency: Four steps involved, Derivations of efficiency. Van der Waals equation of state, Critical constants: Derivation. Liquification of gases: Concept used in refrigerator.	10
10	RefrigerationIntroduction to refrigeration principle: Differencebetween Heat Engine and Refrigerator with the help ofCarnot cycle. Adiabatic and isothermal process.Coefficient of performance. Conditions for goodrefrigerant. Simple structure, and working of gasrefrigeration – vapor and air.	6
11.	 Optics: Properties of light: Reflection, refraction, dispersion, diffraction, Interference and Polarization. Concept of polarization. Polarization by reflection – Brewster's law. Polarization by double refraction – Nicol Prism. Lasers: Stimulated emissions, Optical pumping, Concept of population inversion, Laser action, Working of He-Ne laser. Applications of Laser. 	8
12.	Charge and Matter Electromagnetism – preview, Electric charge. Conductor, Semiconductor and Insulator. Coulomb's law. Charge is quantized. Charge and matter. Charge is conserved. Electricity with minimum 3 examples.	8
13.	MagnetismThe magnetic field. The definition of B. Poles and dipoles.Gauss' law of magnetism. Magnetism of earth.Paramagnetism. Diamagnetism. Ferromagnetism. Nuclearmagnetism. Biomagnetism with minimum 3 examples.	8

- 1 Physics David Hallday and Robert Resnick(Vol. I and II) (Willey Eastern Ltd.)
- 2 Fundamentals of mechanics S.K. Saxena (Himalaya Publication)
- 3 Perspectives of modern physics Arthur Beiser (Mc Graw Hill)
- 4 Heat and thermodynamics Zemansky (Mc Graw Hill)
- 5 Fundamentals of optics Jenkins, White (Mc Graw Hill)
- 6 Optics Ajoy Ghatak (Tata Mc Graw Hill)
- 7 Solar Energy Suhas Sukhatme (Tata Mc Graw Hill)
- 8 Digital principles and applications Malvino and Leach (Tata Mc Graw Hill)

- 9 Elements of spectroscopy Gupta, Kumar, Sharma (Pragati Prakashan)
- 10 Introduction to atomic spectra H.E. White (Mc Graw Hill)

Note: Students have learned most of the topics from this course at 10+2 level, but they need better understanding to apply or realize the relevance of these concepts with life, which is necessary while learning biotechnology. Teacher must highlight and emphasize the applications or relevance of Physics concepts in life science.

Bb- 103 Basic Biosciences First Term

	Plant Sciences	
Sr. No.	Торіс	Lecture
1.	General & Unique features of plants as a category of living	3
	'Plant' as a life form.	
2.	Major aspects of plant sciences	
	a) Structural Morphology - of vegetative and reproductive plant organs	3
	Anatomy – Internal organization of vegetative and	4
	Plant cell biology – Unique features of a plant cell	4
	b) Functional Principles and fundamental processes of plant growth and development, <i>In vivo</i> morphogenesis, Introduction to <i>in</i>	
	 vitro morphogenesis Pigments in plant growth and development, Major pathways in plant metabolism. Introduction to physiology of flowering a) photoperiodism b) vernalisation 	6 2
	Plant growth regulators introduction to site of synthesis and effects	5
	Seed – Development, structure, germination, control of seed germination.	4
	Development of special prenneting organs – bulb, tuber, corm, rhizome	2
3.	Plant groups with respect to increasing complexity in organization of plant bodyKey characters of each group. At least three examples of biologically economically and biotechnologically important forms from each of the following major groups: 1. Algae 2. Fungi 3. Bryophytes 4. Pteridophytes 5.	10

	Gymnosperms 6. Angiosperms	
4.	Life cycle patterns in major plant groups	5
	Second Term	
	Animal Sciences	
Sr. No.	Торіс	Lecture
1.	Comparative account of sponges to mammals(with	20
	representative examples)	
2.	Host parasite relationship	10
	1. Global feature of parasite and host interaction	
	2. Protozoan parasites	
	3. Nematode parasites	
	4. Platehelminthes parasites	
3	Economic zoology	15
	1. Beneficial and harmful organisms	
	2. Vermiculture	
	3. Aquaculture	
	4. Sericulture	
	5. Apiculture	

- 1. Devlin R.M. Fundamentals of Plant Physiology (Mac. Millan)
- 2. Malik C.P. Plant Physiology, Kalyani Publishers
- 3. Dube H.C. Text of Fungi, Bacteria and Viruses
- 4. Bold H.C. The Plant Kingdom, Prentice- Hall India
- 5. Chopra G.L. Class book of algae, ii. Class book of fungi
- 6. Dutta A.C. A Classbook of Botany, Oxford University Press
- 7. Kumar H.D. Biodiversity and sustainable development (Oxford & IBH)
- 8. Mukherji H. Plant groups (New central book depot)
- 9. Parihar N.S. An introduction to embryophyta (Central Book Depot)
- 10. Vasishtha P.C. Botany for degree students-Gymnosperms
- 11. Naik V.N. Taxonomy of Angiosperms
- 12. Lawrence G.H. Taxonomy of flowering plants
- 13. Chopra G.L. Angiosperms (Systematic and life cycle)
- 14. Shivarajan V.V. Introduction to principles of Taxonomy
- 15. Pandey B.P. Text book of Angiosperms

16. Eames A.J. and

- Mac Daniels L.H. An introduction of Plant Anatomy
- 17. Esau K. Anatomy of seed plants
- 18. Esau K. Plant Anatomy
- 19. Fahn A.Plant Anatomy
- 20. Mathur R.C. Systematic Botany
- 21. Kochar S. L. Economic Botany in tropics
- 22. Wareing and Philips. Control of growth and differentiation in plants

<u>Bb-104 Mathematics and Statistical Methods for Biologists</u>

	First Term – Mathematics (45L) Pre-requisites: Sets, Number system (in brief) Matrices: Definition, types of matrices, addition, multiplication of matrices, inverse of a matrix Limits, differentiation, integration Graphs of standard functions:- X, X ² , X ³ , 1X1, log _a X, e ^X	
Sr. No.	Торіс	No. of Lectures
1	Complex numbers :- addition, subtraction, multiplication, division, De-Moiver's theorem, finding roots of polynomial equation	6
2	Sequences and series :- definition of convergent, divergent and oscillatory sequence. Following results without proof. (i) A monotonic increasing sequence bounded above is convergent. (ii) Geometric sequence {an} is convergent if $-1 < -1$ Definition of convergent, divergent, oscillatory series Convergence of i) geometric series, ii) P-series (without proof) Tests of convergence i) comparison test, ii) D'Alembert's ratio test (limit form), iii) Cauchy's root test (limit form) Taylor's theorem, Maclaurin's theorem (without proof). Power series expansion of c^x siny cocy $(1+x)^n$	12
3	Partial Differentiation :- Maxima and minima (up to 2 variables) Rules of partial differentiation Higher order partial derivatives	3
4	Differential equations :- Homogeneous and non-homogeneous differential equations, exact d.e. (including integrating factor). Linear differential equation. Applications to growth and decay, law of cooling	6
5	Matrices and system of linear equations, row echelon form, rank of a matrix, homogeneous and non-homogeneous systems AX = B, consistency, gaussian elimination method.	6
6	Vector spaces :- IR ⁿ and Mmxn ®, subspace of a vector space, linear dependence of vectors, eigenvalues and eigenvectors, diagonalization	12
	References:1. Malick, S.C. and Arora Mathematical Analysis2. Jenny Olive – Maths :- a self study Guide – Cambridge Low prices edition3. R.G. Bartle and D.R. Sherbert (2 nd edition)-1992, John Wiley, New York4. E.D. Rainville and P.E. Bedient (1989), Elementary Differential equations – McMillan, New York5. System of Linear Equations 6. Eigen values and Eigen vectors 7. Partial Differentiation and differential equations 8. Sequences and series.	

	Second Term – Statistics (45L)	
1	Introduction to statistics with scope in biosciences (examples) Statistics as statistical data : various types of data (Raw data, grouped data)	3
	Representation of data using frequency distribution diagram (Simple/Multiple/Subdivided bar diagram, Pie diagram),	
2	Population, sample, sampling methods (SRS, Stratified sampling)1L	1
3	Descriptive statistics a)Measure of central tendency: Mean (Definition & simple problems) Medion, Quarliles (Definition, Graphical calculation) Mode (Definition, graphical calculation) Situations where one is preferred over others	3
	b)Measures of dispersion: Variance (Definition, simple problems) Standard deviation Coefficient of variance	3
	c)Skewness (Definition, types of skewness and graphical representation, no formula, and real life example) d)Kurtosis (Definition, types of Kurtosis, graphical representation, no formula, and real life example)	1
	representation, no formula, and fear me example)	1
4	 Probability a)Classical definition and its limitations, axiomatic approach (laws of problem only statement and no proof) b)Independence and conditional problem (real life examples in biology) 	2
5	Standard probability distribution a)Binomial (Definition, biological example, additive property (only statement), simple examples b)Poisson (Definition, biological example, additive property (only statement), simple examples c)Namal (Definition, biological example, linear property (only statement, simple examples (using statistical tables), central limit theorem	8
6	Inferential statistics a)Hypothesis- definition, types (One tailed, two tailed) b)Sampling distribution and errors c)Types of errors (Type I, II)	2
7	Testing of hypothesis (two tailed only) a)For mean (one population) Mean (2 populations- dependent and independent) b)For variance (one population) Variance (2 populations) c)Chi-square test for 1) fitting of distribution 2) Independence of attributes	12
8	ANOVA 1) one way, 2) two way followed by t test (pairwise)	6

9	Correlation (Definition, types of correlation with simple	3
	biological problems)	
	Scatter diagram	
	Covariance	
	Multiple correlation (definition, formula when matrix is given)	
	Partial correlation (definition, formula when matrix is given)	

Bb- 105 Fundamentals of Biological Chemistry <u>First Term</u>

Sr. No.	Торіс	Lecture
1	Origin of life, Origin of amino acids, nucleotides, Urey Miller's expt., Unicellular organism, multicellular organisms. Concept of biomolecules, polymerisation, formation of polymers i.e. proteins, nucleic acids, Molecular interactions, biological functions.	7
2	Chiral interactions, pH, pK, buffers. Reaction mechanism. Nucleophile, electrophile, Acid base reaction, nucleophilic addition, nucleophilic substitution, electrophilic addition, electrophilic substitution reaction.	14
3	Carbohydrates: Intoduction, biological importance. Definition, Classification, {glyceraldehydes, Simple Aldose, Simple Ketose, D-glucose, Conformation of D- glucose] Monosaccharides other than glucose, glyocosidic bond, disaccharides, polysaccharides [starch, glycogen, peptidoglycan, proteoglycan matrix.	12

4	Lipids: Introduction, Classes, Fatty acids [Physical prop. Chemical prop, Sap value, acid value, iodine number, rancidity]. Glycerolipid, Sphingolipid, Lipid derived from isoprene, Behavior of lipid in water, Bile acids, bile salts, plasma lipoproteins, Vesicles, membrane transport	12
	Second Term	
5	Amino acids: Structure and properties of amino acids. Acid base behavior/ amino acids analysis/ reactions/ Zwitterions/ classification.	3
6	Protein structure: Peptide bond/ Determination of primary structure/ Sanger's method, Edmann's method, dansylchloride, dabsyl- chloride/ Forces stabilizing secondary structure, Ramachandran plot, Hb and antibody examples of quaternary structure.	10
7	Protein purification: Methods of cell disruption, Salt ppt salting in, salting out, organic solvent ppt., Dialysis, Ultrafilteration, Paper chromatography, TLC, HPTLC, Column chromatography, Electrophoresis.	9

8	Enzymes: Basic concept, active site, energy of activation. Transition state hypothesis, Lock and key hypothesis, induced fit hypothesis. Allosteric enzymes, Enzyme inhibition, classification. MM equation, Lineweaver-Burk plot, Eadie-Hofstee plot.	9
9	Co-enzymes: Thiamine, riboflavin, niacin, PLP, Lipoid acid, Pantothinate, Folic acid, Cynocobalamine.	6
10	Nucleic acids: Nucleosides, nucleotides, Polynucleotide, DNA and its different forms [A, B, C, D, E and Z], RNA and its types. Forces stabilizing nucleic acid structure.	8

- Outlines of Biochemistry: Conn and Stumpf 1
- Principles of Biochemistry: Jeffory Zubey Biochemistry: Stryer 2
- 3

Bb-106 Biophysics and Instrumentation

<u>First Term</u>

No	Торіс	Lectures
1	Atomic structure Historical background upto Bohr model. Significance of second and third postulate of Bohr's model. Derivation of radius and energy value. Quantization of energy levels. Using Rydburg's constant, Atomic spectra is signature of the element. Bohr – Sommerfeld model. Vector atom model. Quantum numbers. Selection rules. Pauli's exclusion principle. Emission spectra with respect to Na atoms to understand selection rules.	10
2	 Spectroscopy Definition. Electromagnetic wave. Electromagnetic spectrum. Applications of each region of electromagnetic spectrum for spectroscopy. Introduction to molecular energy levels. Excitation. Absorption. Emission. Rotational spectra. Energy levels of rigid diatomic molecules. Vibrational and rotational spectra. Energy levels of diatomic vibrating molecules. Rotational Vibrational Spectroscopy - IR spectroscopy. Principle, construction and working of IR spectroscopy. Principle, construction and working of colorimeter, Spectrophotometer, Flurometer. Application to biomolecules (proteins, DNA, Hb, chlorophyll). 	20

3	Radioactivity	15
	Nucleus. Properties. Nuclear forces. Nuclear models	
	(liquid drop and shell model). Radioactive nucleus.	
	Revision of nuclear radiations and their properties -	
	alpha bota and gamma Half life physical and	
	historical	
	Handling and standardization of alpha and beta emitting	
	isotopes. Radioimunoassay. Radiopharmaceuticals and	
	its uptake. Production of radionuclides. Measurement of	
	radiation - Dosimetry and detectors.	
	Principle, construction and working of – pen and batch	
	dosimeter, GM counter, Scintillation counter (solid and	
	liquid)	
	Second Term	
Δ	Thermodynamics as annlied to biological systems	10
т	Enthalpy Entropy Erection and Gibb's free energy (G)	10
	Linually, Endopy, Free energy, Oldo's free energy (0).	
	Heinmoltz nee energy (A). Cheinical potential. Han cen	
	potential. Redox potential. Structure and bioenergetics of	
	mitochondria and chloroplast.	
5	Cell membrane	10
	Organization of plasma membrane. Mass transport.	
	Diffusion – basics. Passive and active transport.	
	Membrane potential, Nernst equation. Passive electrical	
	properties of cell (capacitance, resistance). Active	
	electrical properties Electrical model (equivalent) of cell	
	membrane Depolarization hyperpolarization of	
	membrane (neuronal) Generation of action potential	
	Turnes of bionotantials Dionotantial massurement	
	Types of biopotentials. Biopotential measurement	
6	Instrument	.
6	Thermoregulation	05
	Thermometric properties and types of thermometers	
	(clinical, thermocouple, bimetallic, platinum resistance,	
	thermistor - thermometers). Body temperature and its	
	regulation.	
7		10
	Bioinstruments	
	Concepts- Analytical techniques, analyte, method, procedure	
	and protocol. Principle construction, working and	
	applications for analysis of biomolecules of following	
	instruments.	
	pH meter. Centrifuge (RCF. sedimentation concept).	
	different types of centrifuges. Mass spectroscopy (Bainbridge	
	mass spectrometer). Atomic absorption spectrometer (AAS).	
	Nuclear magnetic resonance spectrometer (NMR).	

8	Microscopes	10
	Concepts - Resolving power. Chromatic and achromatic	
	aberrations. Construction and working of following	
	microscopes–Dissecting, Compound light and Darkfield.	
	Inverted. Phase contrast. Fluorescence.	
	Electron microscopes: Concept of vacuum, Working of	
	electron gun. Construction and working of SEM, TEM,	
	STEM. Sample preparation.	

- 1. Perspectives of modern physics Arthur Beiser (Mc Graw Hill)
- 2. Nuclear physics an introduction S.B. Patel (New Age International)
- 3. Introduction to atomic spectra H.E. White (Mc Graw Hill)
- 4. Textbook of optics and atomic physics P.P. Khandelwal (Himlaya Publishing House.
- 5. Molecular cell biology Ladish, Berk, Matsudara, Kaiser, Krieger, Zipursky, Darnell (W.H. Freeman and Co.)
- 6. Biophysics Cotrell (Eastern Economy Edition)
- 7. Clinical Biophysics Principles and Techniques- P. Narayanan (Bhalani Pub., Mumbai)
- 8. Biophysics Pattabhi and Gautham (Narosa Publishing House)
- 9. Instrumentation measurements and analysis Nakara, Choudhari (Tata Mc Graw Hill)
- 10. Handbook of analytical instruments R.S. Khandpur (Tata Mc Graw Hill)
- 11. Biophysical Chemistry- Upadhyay, Upadhyay and Nath (Himalaya Pub. House, Delhi)

Bb-107 Microbiology

roduction to Microbial World. Biocomplexity of Microorganisms. . Historical Account – Important developments	1
Biocomplexity of Microorganisms. . Historical Account – Important developments	1
. Historical Account – Important developments	
	7
ading to major discoveries.	
Path breaking discoveries.	
Product Development $(18^{th} - 20^{th} Century)$	
including pregolden, golden and post golden	
cia)	
microorganisms.	22
Procaryotic and Eucaryotic	
Bacteria, Fungi, Algae and viruses.	
)	Path breaking discoveries. Product Development (18 th – 20 th Century including pregolden, golden and post golden era) Putline Classification of all 5 major groups of microorganisms. Procaryotic and Eucaryotic Bacteria, Fungi, Algae and viruses.

2	Basic Methods in microbiology. a) Introduction to instruments and equipments needed in Microbial studies b) Observations – Macroscopic:	35
	Colony formation patterns, Biofilm formation.	
	Microscopic: Wet mount and dry mount.	
	Staining Techniques (Monochrome, Negative,	
	Differential, Special staining)	
	c) Cultivation – In vitro and in Vivo	
	Basic Considerations – Nutritional, Hydrogen	
	ion concentration, Temperature and Oxygen.	
	Concept of Pure culture, co-culture and Mixed	
	culture.	
	Design of media : Composition, Sterlisation.	
	Preservation and Maintenance	
	Methods for microbial cultures.	
4.	Microbial Growth	
	Reproduction in microorganisms :Binary Fission,	15
	Asexual, Sexual, Lytic, Lysogenic Cycle.	
	Cell Enumeration and quantification of Growth	
5.	Microbial interaction	10
	Plants, Rhizosphere, mycorrhiza, Plant pathogens,	10
	nodules.	

General Microbiology - Stanier, 5th ed. Introduction to Microbiology - Ingraham, 2nd ed. Brock Biology of Microorganisms - Madigan et al, 9th ed. Industrial Microbiology - An introduction, Waites, M.J.

Bb- 108 Use of Computers

First Term

Sr. No.	Торіс	Lecture
1.	Introduction to computers:	
	Overview and functions of a computer system	5
	Input and output devices	
	 Storage devices: Hard disk, Diskette, Magnetic tape, RAID, ZIP devices, Digital tape, CD-ROM, DVD (capacity and access time) Main Circuit Board of a PC: Chips. Ports. Expansion 	
	Slots	
	Memory: Register, buffer, RAM, ROM, PROM, EPROM, EEPROM (comparison)	
	Types of Processing : Batch, Real-Time, Online, Offline	
2.	History:	
	Evolution, Generation of computers (I, II, III, IV, V)	3
	Classification of computers (mainframes, mini	
	computers, microcomputers, special purpose)	
	Comparison with respect to memory, power, cost, size	
3.	Modern computers:	2
	• The workstation, The Minicomputer, Mainframe	3
	Computers, Parallel processing Computer & The	
4	Super Computer	
4	Introduction to operating systems:	10
	 Operating System concept, Windows 98/XP 	10
	 Windows 50/XL, Windows server NT/2000 	
	 Unix/Linux & servers 	
5	Data processing & presentation:	16
5	 Introduction 	10
	 MS office (World, Excel & Power Point) 	
6	Computer viruses:	3
-	 An overview of Computer viruses 	, e
	• What is a virus ? Virus symptoms, How do they get	
	transmitted ? What are the dangers ?	
	General Precautions	

Second Term

Sr. No.	Торіс	Lecture
7.	Computer Networking:	10
	Introduction to networking: various terminologies Associated hardware devices, gadgets (Router, Switch	

	etc.), tools, services, and resources	
	Network Topologies and Protocols	
	LAN, WAN and MAN	
	World Wide Web (WWW)	
	Network security: fire walls	
8.	Internet searches:	10
	Search engines: Google, Yahoo etc.	
	Concepts in text-based searching	
	Searching Medline, bibliographic databases	
		10
9.	Algorithms, Flowcharts & Programming concepts:	12
	 Algorithms: Concepts & definitions 	
	 Converting algorithms to flowcharts 	
	 Coding: flowcharts to programs 	
	 Comparing algorithms, flowcharts & programs 	
10	Detehogogi	13
10.	Databases.	15
	 Infroduction & field of databases Types of databases 	
	 Types of databases Basia concenta in: 	
	 Basic concepts in: 	
	O Data Adstraction	
	o Data Models	
	o Instances & Schemes	
	• E-R Model (Entity and entity sets; Relations	
	and relationship sets; E-R diagrams;	
	Reducing E-R Diagrams to tables)	
	 Network Data Model: Basic concepts 	
	 Hierarchical Data Model: Basic concepts 	
	 Multimedia Databases: Basic concepts and 	
	Applications	
	 Indexing and Hashing 	
	\circ B+ Tree indexed files	
	• B Tree indexed files	
	• Static Hash functions	
	• Dynamic Hash functions	
	 Text Databases 	
	 Introduction & Overview of Biological databases 	
11	Introduction to Bioinformatics:	5
	Nature of Biological data	
	Overview of Bioinformatics	
	Major Bioinformatics Resources: NCBI, EBI &	
	ExPASY	

- 1. Introduction to Computers Data processing & Networking
- 2. Computer Fundamentals P.K. Sinha
- 3. Introduction to Bioinformatics- Attwood
- 4. Instant Notes in Bioinformatics

|--|

Sr. No.	Торіс	Practical (30P)
	First Term	
1	Determination of gas constant	
2	Crystal models	
3	Freezing point depression	
4	Thermochemistry	
5	Determination of an order of reaction	
6	Acid-base titrations	
7	Molarity, molality, normality	

8	Unit volume & weight measurements	
9	pH measurement	
10	Optical activity of a chemical compound by polarimeter	
11	Conductometry	
	Second Term	
1	Preparation of solutions, buffers – sensitivity, specificity, accuracy	
2	Spot test for carbohydrates	
3	Estimation of reducing sugars by Benedict's Method	
4	Spot tests for Amino Acids	
5	Quantitative methods for Amino acids	
6	Protein estimation	
7	Saponification of Fats	
8	Estimation of Cholesterol	
9	Enzyme assays	

<u>Bb-110 Techniques in Physics, Biophysics & Instrumentation</u> (Practical)

Sr. No.	Торіс	Practical (30P)
	<u>First Term</u>	
1	Flat spiral spring : Y & n	
2	Y of a rectangular thin bar by bending	
3	Viscosity measurement using Ostwalds viscometer	
4	Surface – tension measurement: Using Jaeger's method, soap bubble Method	
5	Temperature measurement: using thermocouple, RTD	
6	Study of Lambert's & Beer's law	
7	Absorption spectrum of protein	

8	Fluorescence spectrum of protein	
9	Counting statistics using G.M. counter	
10	Study of DNA melting	
11	Study of transport across membrane by potential measurement	
12	To find out isoelectric point of amino acid	
	Second Term	
1	Instrumentation – Colorimeter	
2	pH meter	
3	Safety measure – time	
4	Study of electronic components (resistance capacitance)	
5	Microscopy – light	
6	Viscosity	

Bb-111 Laboratory Exercises in Biosciences (Practical)

Sr. No.	Торіс	
	<u>First Term</u>	
1	Study of example of each type of the following: algae, fungi, bryophytes, pteridophytes, gymnosperms, angiosperms – dicotyledones and monocotyledones.	3P
2	Study of different parts of plants –Qualitative histochemistry of root, stem and leaf of monocotyledon and dicotyledon.	2P
3	Study of the shoot apex, and dissection of shoot apical meristem.	1P
4	Study of plant cell types using squash techniques and maceration.	1P
5	In vitro seed germination	1P
6	Regeneration of plant in vivo	2P
7	Introduction to Microbiology Laboratory	1P
8	Aseptic Transfer Techniques	1P
9	Observation of microorganisms a) Wet mount b) Monochrome staining c) Gram staining d) Spore staining e) Fungal staining	5P
	<u>Second Term</u>	
1	Isolation of bacteria by Streak Plate Technique	1P
2	Enumeration techniques a) Pour plate method	3P

	b) Spread plate method	
	c) Neubauer Chamber	
	d) Plaque Count	
3	Study of paramecium, Hydra	1P
4	Study of Drosophila - characters, sexual dimorphism -	1P
	eye & wing mutations	
5	Study of collection, preservation & presentation of	1P
	insects	
6	Study of different types of eggs, larvae & pupae of	1P
	insects	
7	Use of microscope	1P
8	Preparation of media (bacterial & fungal)	1P
9	Enrichment techniques	1P
	Winogradsky's Column	
10	Observation of motility	1P
	a) Hanging drop technique	
	b) Craigie's tube method	
	c) Swarming growth	
11	Report	1P

Bb-112 Quantitative Methods in Biology (Practical)

Sr. No.	Торіс	Practical (30P)
	First Term	
1	Exercise based on mathematics & statistical methods for biologists	4P
2	Computer – Getting familiar with the hardware, booting & operating	1P
3	Getting started: Hands-on experience (Tutors are recommended)	1P
4	Tutorials operating systems: DOS, Windows 98/XP, UNIX etc.	4P
5	File handling: copy, rename, delete, type etc. Directory structure: make, rename, move directory	2P
6	Scanning for viruses & using anti-virus programs	1P
7	Word Processing (Microsoft Word): Creating, Saving & Operating a document, Editing, Inserting, Deleting, Formatting, Moving & Copying Text, Find & Replace, Spell Checker & Grammar Checker, Document Enhancement (Borders, Shading, Header, Footer), Printing document (Page layout, Margins), Introduction to the use of Wizards & Templates, Working with Graphics (Word Art), Working with Tables & Charts, Inserting Files (Pictures, Databases, Spreadsheets)	2P
	Second Term	•

1	Exercise based on mathematics & statistical methods for biologist I.	6P
2	Use of internet – Downloading & Installing software/plug- ins on Windows 98/XP (Acrobat Reader, Post Scripts Viewer, etc.)	1P
3	Searching/Surfing on the WWW	2P
4	Spreadsheet Applications (Microsoft Excel): Worksheet Basics: Entering information in a Worksheet, Saving & Opening a Worksheet, Editing, Copying & Moving data, Inserting, Deleting & Moving Columns & Rows, Clearing Cells & Formatting Cells, Printing Worksheets	2P
5	Database Applications (Microsoft Access): Fields, Records, Files, Organization of Files, Access Modes; Updating Records, Querying, Reports, Forms & subforms	2P
6	Usage of multimedia – Creation of Computer Presentations with graphics (Microsoft Power Point): Creation of slides, Rapid Presentation design using wizards	2P

Course	Title of the Course	Theory/ Practical	Marks	Lecture/ Practical
couc	Semester I	Tuccicui		Tructicui
Bb-211	Genetics & Immunology	Theory	100	90L
Bb-212	Cell Biology	Theory	100	90L
Bb-213	Molecular Biology	Theory	100	90L
Bb-214	Techniques in Molecular Biology	Practical	100	30P
Bb-215	Exercises in Cell Biology & Genetics	Practical	100	30P
	Semester II		•	
Bb-221	Environmental Biology and Biotechnology	Theory	100	90L
Bb-222	Plant & Animal Tissue Culture	Theory	100	90L
Bb-223	English	Theory	100	90L
Bb-224	Metabolic Pathways	Theory	100	90L
Bb-225	Tissue Culture Techniques	Practical	100	30P

B.Sc. (Biotechnology) Second Year Course Structure

Detailed Syllabus Second year (Semester I)

Bb- 211 Genetics & Immunology

Sr. No.	Торіс	Lecture
1	Mendelian inheritance patterns & laws of heredity	5
2	Co-dominance, linkage & linkage maps	8
3	Mutations, variations & chromosomal alterations	8
4	Varieties of gene expressions – Multiple alleles, lethal genes, Pleiotropic genes, gene interactions etc.	6
5	DNA transfer mechanism: Prokaryotes, Eukaryotes & Viruses with examples. Mobile genetic elements & transposons	17
6	Bacterial plasmids – structure & properties	3
7	Operon concept – with examples	3
8	Overview of immune system a) History b) Adaptive immunity c) Innate immunity	10
9	Antigens, Antibodies – Structure & functions	15
10	Antigen – Antibody interactions, principle & applications	10
11	Introduction to Vaccines : Active & Passive immunization, types of Vaccines	5

Reference Books:

- 1 Strickberger "Genetics" (Macmillan)
- 2 Freifelder "Genetics"
- 3 Riott "Essential Immunology"

Bb- 212 Cell Biology

Sr. No.	Торіс	Lecture
1.	Cell – Shapes, morphology, Cell theory	5
2.	Cells, Structure-function relationship including organelles (e.g., Endoplasmic reticulum, Mitochondria, Chloroplast, Golgi body, nucleus, lysosomes, vacuoles)	24
3.	Membrane structure, Membrane transport	6
4.	Cytoskeleton, Extracellular matrix, Cell junctions	10
	Second Term	
5.	Tissues : Types and functions	10
6.	The mechanism of cell division	5
7.	Cell division cycle and its regulation	5
8.	Cell Signaling	10
9.	Cell differentiation, Neoplasia & Cell death	10
10.	Methods (including microscopy) in Cell biology	5

Reference Books :

- 1 Lodish et al (2004) Molecular Cell Biology " (Scientific American Book)
- 2 Eduard Gasque "Manual of Loboratory Expts in Cell Biol ."(W. C. ... Wilson Pub)
- 3 Alberts et al. (2002) The Biology of the Cell
- 4 Cooper & Hausman (2004) The Cell A Molecular Approach

<u>Bb- 213 Molecular Biology</u>

Sr. No.	Торіс	Lecture
1.	DNA as the genetic material	4
2.	Nucleic acids- structure, properties and function; DNA	10
	forms; RNA: tRNA, rRNA & mRNA	
3.	Organization of Genomes- Viral, Bacterial, Organelles,	12
	human	
4.	Eukaryotic genomes: Chromosomal organization and	14
	structure. Euchromatin, heterochromatin, centromere,	
	telomere. Chromatin structure (nucleosomes)- histone,	
	non-histone proteins	

5.	Definition of gene – introns/exons, Regulatory sequences, promoters, enhancers	10
6.	Central dogma of Molecular Biology. DNA replication in prokaryotes and eukaryotes	10
8	DNA damage and repair, mutations	5
9	Transcription and regulation of transcription	10
10	Genetic code, Protein synthesis	10
11	Post-translational modifications and transport of proteins	5

- 1 Genes VIII : Benjamin Lewin
- 2 Genome : T. A. Brown
- 3 Molecular biology of Gene : Watson
- 4 Cell and Molecular Biology : Lodish
- 5. Mol. Biol.: Weaver

Bb- 214 Techniques in Molecular Biology (Practical)

Sr. No.	Topics	Practicals (30P)
1	Importance of clean handling, sterility, cleanliness, reagent preparation	3P
2.	DNA isolation- a) Bacterial DNA, b) Eukayotic DNA	6P
3.	Absorption spectra of Proteins, Nucleic acids	4P
4.	Analysis of DNA by Agarose gel electrophoresis	6P

5.	Restriction enzyme digestion	3P
6.	Protein estimation by Biuret and Lowry procedures	4P
7.	SDF-PAGE separation of proteins	4P

Bb- 215 Exercises in Cell Biology & Genetics (Practical)

Sr. No.	Торіс	Practical (30P)
1	Cell Structure – prokaryotes and eukaryotes	2P
2	Separation of cells using sedimentation and velocity centrifugation	2P
3	Study of subcellular organelles	2P
4	Isolation and characterization of subcellular components, isolation of nuclei from rat liver	2P
5	Isolation of mitochondria	2P
6	Demonstration of phenolase /phoshatase in tissue section	2P
7	Cell harvesting and cell lysis- methodology	2P
8	Observation of Drosophila – wild type and mutant	3P
9	Problem sets in Mendalian inheritance, single point & two point crosses and gene mapping in bacteria	5P
10	Isolation of mutants, isolation and enumeration of phages	3P
11	UV survival curve	2P
12	Immunoprecipitation	1P
13	Demonstration of Antigen- Antibody reaction through clinical approach	2P

Semester II

Sr. No.	Торіс	Lecture
1.	Basic Ecological Concepts & Principles	45 T
	a) Our Environment: Geological consideration	5
	Atmosphere	
	Hydrosphere	
	Lithosphere	3
	b) Scope of Ecology	3
	c) Development & Evolution of Ecosystem	6
	d) Principles & Concepts of Ecosystem	
	Structure of ecosystem	
	Strata of an ecosystem	
	Types of ecosystem including habitats	
	Cybernettics & Homeostasis	
	Biological control of chemical environment	7
	e) Energy trasfer in an Ecosystem	
	Food chain, food web	
	Energy budget	
	Production & decomposition in a system	
	 Ecological efficiencies 	
	Traphic structure & energy pyramids	
	Ecological energetics	4
	f) Priciples pertaining of limiting factors	7
	g) Bio-geochemical cycles (N,C,P cycles)	
2.	Pollution & Environmental Health	20
	1. Pollution & environmental Health	
	➢ Soil	
	> Water	
	➢ Air	
	> Food	
	Pesticides, Metals, Solvents, Radiations,	
	Carcinogen, Poisons	
	2. Detection of Environmental pollutant	
	3. Indicators & detection systems	
	4. Biotransformation	
	Plastic , Aromatics , Hazardous wastes	
	5. Environmental cleanup : Case studies	
3.	Environmental biotechnologies	20
	Biotechnologies in protection and preservation of	
	environment	
	Bioremediation	
	Waste disposal	

Bb- 221 Environmental Biology and Biotechnology

Reference Books:

1. E.P. Odum : Fundamentals of Ecology

- 2. Amann, R.I. Stromley, J. Stahl : Applied & Environmental Microbiology
- 3. Dash : Concepts of Ecology
- 4. Chattergy : Environmental Biotechnology
- 5. Varma & Agarwal : Environmental Biology
- 6. B.K. Sharma : Environmental Chemistry
- 7. Peavy & Rowe : Environmental Pollution
- 8. Asthana & Asthana : Environment Problems & Solutions
- 9. Manahan : Environmental Chemistry
- 10. Saigo, Canninhham : Environmental Science

Bb- 222 Plant & Animal Tissue Culture

Sr. No.	Торіс	Lecture
	A) Plant Tissue Culture: 45L	3
1	Introductory History – Concepts of Cell theory & Cellular	
	totipotency,	
	Milestones in plant tissue culture.	
2	Infrastructure & Organization of plant tissue culture	3
	laboratory – General & aseptic laboratory, different work	
	areas, equipments & instruments required, other	
2	requirements.	2
3	Aseptic techniques – Washing & preparation of	3
	glassware, packing & sterilization, media sterilization,	
	surface sterilization, aseptic work station, precautions to	
4	maintain aseptic conditions.	1
4	culture Medium – Nutritional requirements of the	4
	preparation	
5	'Explant' for plant tissue culture – histological and/or	3
5.	cellular characteristics	5
	Response of explants <i>in vitro</i> – Dedifferentiation and	
	redifferentiation	
	a) callus formation	
	b) organogenesis (direct and indirect)	
	c) embryogenesis (direct and indirect)	
6	Callus culture technique - Introduction, principle,	3
	protocol, factors affecting, Morphology & internal	
	structure, genetic variation	
7	Suspension culture technique – Introduction, principle,	3
	protocol, types, growth & growth measurement,	
	synchronization	
8	Organ culture technique – Introduction, principle,	3
	protocol factors affecting w.r.t. root tip culture, leaf	
0	culture, shoot tip & meristem culture,	2
9	Anther & pollen culture technique – Introduction,	3
	principle, protocol, factors affecting,	
	ovary, ovule, embryo and endosperm culture.	
10	······································	2

11	Protoplast – protoplast isolation, protoplast culture. Somatic hybridization – Protoplast fusion techniques, selection of hybrids, production of symmetric & asymmetric hybrids & cybrid production. Genetic transformations – DNA uptake by seeds, pollens, transformation of protoplasts, agrobacterium mediated transformations, direct DNA transfer methods – electroporation, microprojectile bombardment, microinjection, use of marker genes, integration & expression of foreign DNA	6
12	Different routes of multiplication <i>in vitro</i> – a) axillary bud proliferation, b) somatic embryogenesis, c) organogenesis Production of artificial seeds – techniques, factors affecting	3
13	Somaclonal variation – Introduction, terminology, origin, selection at plant level, selection at cell level, mechanism, assessment,	3
14	Introduction to secondary metabolite production <i>in vitro</i> Biotransformations – Introduction, principle, optimization of yield	3
	B) Animal Tissue Culture :	
1.	Animal Tissue culture – Principles & practice, cleanliness, precautions, care to be taken.	6
2.	Nutrition & Physiology media components – Serum, balanced salt solutions, washing, packing, sterilization	6
3.	practices, instruments.	6
4.	Primary cell culture, establishing & maintenance of	6
5.	lymphocyte culture.	6
6.	Cell lines – Insects & Animals cells, subculture.	3
7.	Organ & tissue culture.	3
8	Karyotyping, biochemical & genetic characterization of cell lines.	5
9	Cell Repositories, their function.	2
10.	Application of Animal cell cultures.	2

- 1. Animal Tissue culture : J. Paul
- 2. Introduction to Plant Tissue culture : M.K. Razdan
- 3. Plant Tissue Culture : Theory & Practice : S.S. Bhojwani & M.K. Razdan
- 4. Micropropagation : Debergh & Zimmermann
- 5. Plant tissue culture : Kalyankumar Dey

Bb-223 English

Sr. No.	Торіс	Lecture
1	Programme of writing: Thinking & planning, information, ideas, topic outline, order of paragraph writing, revising.	9
2	Use of vocabulary: Meaning of words, precise usages synonym, technical terms, nomenclature, context, superfluous words.	9
3	Use of Good English: Noun, pronoun, verb, adverb, adjective, conjunction, article, tense, spelling etc.	9
4	Compilation of experimental records, writing progress reports.	9
5	Communication skill: Letters & memoranda, communication as a part of science.	9
6	Reading: How to read, making notes as you read, writing a book review.	9
7	Helping the reader: Easy reading (how to begin, control, explain, sentence length, rhythm, style), Capture & hold readers interest – effective communication.	8
8	The art of illustrations, figures.	6
9	The art of thesis & report writing.	12
10	Editing & correcting.	10

Reference Books:

- 1 Written communication in English Sarah Freeman
- 2 English for students of science A. Roy & P.L. Sharma
- 3 McMillan Grammar: A hand book of "Augustine & Joseph" Orient Longman
- 4 A new guide to précis writing R.W. Jepson (O.L.)

Bb-224 Metabolic Pathways

Sr. No.	Торіс	Lecture
1	Bioenergetics : General concepts of Thermodynamics – Laws of Thermodynamics, Enthalpy, Entropy, Free energy & Chemical Equilibria, High Energy Bonds & Compounds, Oxidation-reduction Reactions & Redox potential	15
2	Enzymes: Coenzymes, Classification, Kinetics, Properties, Catalysis and Regulation	15
3	Metabolism: Introduction (Anabolism & catabolism), Experimental Approaches	2

4	Carbohydrate metabolism: Glycolysis, Fermentation, Citric acid cycle, Oxidative Phosphorylation & ETC, Gluconeogenesis, Pentose phosphate pathway, Glyoxalate shunt, Glycogen metabolism, Diseases associated with Carbohydrate disorder	20
5	Photosynthesis and Photorespiration: Light and Dark reactions	10
6	Lipid metabolism: Fatty acid degradation, Fatty acid synthesis, Regulation of fatty acid metabolism, Metabolic disorders	10
7	Amino acid metabolism: Amino acid degradation & Biosynthesis, Urea cycle, Nitrogen fixation, Metabolic disorders	08
8	Nucleotide metabolism: Synthesis of purine & pyrimidine nucleotides, nucleotide degradation	07
9	Mathematical problems	03

- 1 Outlines of Biochemistry: Conn & Stumpf
- 2 Principles of Biochemistry: Voet & Voet
- 3 Principles of Biochemistry: Jeffory Zubey
- 4 Clinical Biochemistry: D.C Deb
- 5 Biochemistry: Stryer
- 6 Lehninger's Principles of Biochemistry : Nelson & Cox

Bb- 225 Tissue Culture Techniques (Practical)

Sr. No.	Topics	Practical (30P)
Α	Plant Tissue Culture	
1	PTC Laboratory organization of facility and equipment	1P
2	Aseptic manipulation – washing, capping, packing & sterilization, laminar flow operation & general precautions	2P
3	Stock solutions & media preparation	2P
4	Callus culture technique – Initiation of culture, callus morphology & internal structure	2P
5	Suspension culture technique – Initiation of culture, sub culture and growth measurement	2P
6	Effect of plant growth regulators on <i>in vitro</i> response of tobacco explants.	2P
7	Initiation of shoot tip & axillary bud culture and sub culture.	2P
8	Ovary / ovule / anther / embryo culture	2P
В	Animal Tissue Culture	
1	Animal cell culture media preparation, sterilization, washing, packing	3P
2	Observation of cells in culture – Principles & practice	4P

3	Lymphocyte culture	3P
4	Maintenance of cell lines (Sp2O), viable cell count and	4P
	growth studies	
5	Visit to cell culture facilities / Production set up	1P

B. Sc. Biotechnology Third Year

Course structure

Course	Title of the course	Theory/	Marks	Lecture/
Code		Practical		Practical
	Semester III			
Bb-331	Microbial Biotechnology	Theory	100	90L
Bb-332	Animal & Plant Development	Theory	100	90L
Bb-333	Biodiversity & Systematics	Theory	100	90L
Bb-334	Developmental Biology & Microbial Biotechnology	Practical	100	30P
Bb-335	Project (to be continued in semester		50	
	IV)			
	Semester IV			
Bb-341	Large scale Manufacturing process	Theory	100	90L
Bb-342	Biotechnology in Agriculture &	Theory	100	90L
	Health			
Bb-343	Recombinant DNA Technology	Theory	100	90L
Bb-344	Techniques in Genetic Engineering	Practical	100	30P
Bb-345	Project		50	

Detailed Syllabus (Semester III)

Bb- 331 Microbial Biotechnology

Sr. No.	Торіс	Lecture
1	Microbial Biotechnology –Historical perspectives	1
2	Microbial growth kinetics Continuous culture, Batch fed culture, Cell constituents, quantification of growth, Thermodynamics of Growth, YATP, Yx/s, YO2 Effect of different factors on growth Study of growth with respect to product formation Fermentation concept and types	12
3	Basic nutrition & metabolism. Novel pathways of microorganisms	6
4	Microbial strain improvement Bacterial genetics Operon concept with examples (lac, tryptophan, arabinose) Gene mapping–Transformation, conjugation & transduction	10
5	Microbial & Viral diseases Normal flora of the body Infection of different systems Chemotherapy –use of antibiotics, antiviral agents	20

6	Food & Dairy Microbiology ³ / ₄ Microbial flora ³ / ₄ Microbial spoilage ³ / ₄ Preservation Microbes as single cell proteins	15
7	Treatment schemes of Waste water Assessment of waste water (water potability) Sewage treatment plants Aerobic & anaerobic treatment processes	20
8	Integration of genetic engineering & applied microbiology Uses of genetically engineered microbes in Agriculture Industries Medicine	6

- 1 Microbiology Pelczar
- 2 General Microbiology Stanier
- 3 Food Microbiology -Frazier
- 4 Principles of Fermentation Technology Whitaker, A. 2nd edition

Bb-332 Animal and Plant Development

Sr. No.	Торіс	Lecture
1.	Gametogenesis, Fertilization, Development	7
2.	Types and patterns of cleavage, blastulation	5
3.	Gastrulation in frog and chick up to formation of three germinal layers	5
4.	Concepts of competence, determination, commitment and differentiation, dedifferentiation, redifferentiation, transdifferentiation, developmental plasticity in plant (7L) and animal (8L) development	15
5.	Role of gene/s in patterning and development. Concept of Stem cells, Progenitor cells, cell lineages in plants and animals	8
6.	Ageing and apoptosis, abnormal development and teratogenesis in plants and animals: cancer	10
7.	Cloning in mammals, transgenic technology in plants and animals.	8
8.	Cell fusion and somatic cell genetics, hybridomas, Immunoglobulin genes and antibody diversity	8
9.	Embryogenesis in plants (monocotyledons and dicotyledons), Mertistem structure and activity, Plant hormones- role in development	8
10.	Organogenesis, somatic embryogenesis, regeneration of plants.	8
11.	<i>Arabidopsis</i> - as a plant development model system- shoot and root patterning, floral patterning	8

- 1. An Introduction to Embryology B.I. Balinsky
- 2. Development Biology S.F. Gillbert
- 3. Developmental Biology K.V. Rao
- 4. Developmental Biology S.C. Goel
- 5. Developmental Biology Wolpert
- 6. Embryology of Angiosperms S.S. Bhojwani and S.P. Bhatnagar
- 7. An Introduction to Plant Cell Development J. Burgess

Bb- 333 Biodiversity & Systematics

Sr. No.	Торіс	Lecture
1	a) Biodiversity – Concept, definition, species	10
	diversity, ecosystem diversity, genetic diversity,	
	Magnitude of biodiversity, distribution of	
	biodiversity, assessment of biodiversity, utilization	
	of biodiversity, conservation of biodiversity	
2	Population dynamics	5
	a) Population density & relative abundance	
	b) Population age distribution	
	c) Growth forms & carrying capacity	
	d) Population structure : isolation & territoriality	
	e)Interactions	
2	The species & individual in the approxim	
5	a) Habitat & niche	
	b) Ecological equivalence	
	c) Biological clock	
	d) Basic behavioral patterns	
4	Biodiversity & major biomes of world	5
-	Biogeography · Specific flora & fauna	5
5	Conservation of Biodiversity	10
C	a) Importance	10
	b) Conservation strategies $-$ in situ and ex situ	
	methods – advantages, limitations and applications.	
6	Conservation laws, policies & organizations	4
7	Bioprospecting (microbes, plants and animals)	6
8	Biological systematics – principles and practices	30
	a) Aims & objective	
	Tools & techniques of biological systematics [systematics	
	of microorganisms (10L), plants (10L) & animals (10L)]	
	w.r.t. following sources of data as applicable for the group	
	a) Morphology	
	b) Anatomy	
	c) Histology	
	d) Chemistry	
	e) Cytology	
	f) Molecular biology	
	g) Micromorphology	
	h) Palenology	

	i) Embryology	
9	Biosystematics	10
10	Analysis of Biodiversity	10
	a) biodiversity indices	
	b) Mathematical modeling for analysis of population,	
	variation	

- 1. Ecology : Begon & Hareper
- 2. The biology of biodiversity : M.Kato
- 3. Biodiversity : E.O. Willson
- 4. Evolution : Stearns & Hoekstra
- 5. Animal behaviour : Alcock
- 6. Ecological analysis : Freeman & Herron
- 7. Elements of taxonomy : E. Mayor
- 8. Plant Taxonomy & Biodiversity : Stace
- 9. Fundamentals of Plant Systematics : Radford
- 10. Taxonomy of Angiosperms : Naik, V.N.

Bb- 334 Developmental Biology & Microbial Biotechnology (Practical)

Sr. No.	Торіс	Practical (30P)
1.	Study of different types of eggs	1P
2.	Study of staging & staining of Chick embryos	2P
3.	Study of frog development, observation of frog embryo different development stages	2P
4.	Study of different types of sperms by smear preparation.	2P
5.	Frequency of genetic traits in human	1P
6.	Sex-linked inheritance	1P
7.	Multiple allelism	1P
8.	Study of plant development.	10P
	 Microsporogenesis 	1P
	 Development of male and female gametophytes 	2P
	 Developmental stages during plant Embryogenesis 	3P
	 Analysis of histochemical changes during transition of vegetative shoot to reproductive apex 	2P
	 Histochemical analysis of the activity of cambium 	2P
9	Growth curve study- Bacteria and yeast	2P
10	Production of primary and secondary metabolite (one organic acid and one antibiotic)	1P
11	Biomass production (Baker's yeast and Spirulina)	2P
12	Production of beverages (alcohol, wine)	2P

13	Immobilization of yeast on calcium alginate	2P
14	Estimation of the fermentation products by titration	2P
	method	

Semester IV

Bb- 341 Large scale Manufacturing process

Sr. No.	Торіс	Lecture
1	Introduction to Concepts of Bioprocess engineering Definition of Bioprocesses engineering Overview of Bioprocesses with their various components Scales of operation & their global impact on Bioprocesses	2
2	Introduction to Simple engineering calculations, Mass & Energy Balances	3
3	Fermenters, Bioreactors : Construction, Design & Operation Materials of Constructions, Welding, Surface treatment Components of the fermenters & their specifications	8
4	Air & Media sterilization : Air Sterilization Principles, Mechanisms of capture of particles in Air, Depth & Screen Filters, Sizing, Testing & validation of filters for air sterilization Principles of Media Sterilization, Decimal reduction, Design of sterilization cycle using kinetics of thermal depth of microbes Equipments used in sterilization; Batch & Continuous	4
5	Media for large-scale processes & their optimization : Constituents of media, their estimation & quantification. Design of media. Costing of media	3
6	Types of Bioprocesses : Biotransformations (enzyme, whole cell), Batch Fed-batch, Cell recycle & continuous	10

	fermentation processes. Monod model & constitutive equations used for expressing growth, substrate consumption & product formation, Solid State fermentation	
7	Enzyme & cell immobilization (industrial aspects) Properties of enzymes to be immobilized. Adsorption, Covalent binding, Entrapment or encapsulation. Properties of immobilized enzymes (Km, Ks, cycle time half life). Inactivation kinetics.	5

8	Measurement & Control of Bioprocesses Parameters. Cell growth. pH, temperature, Substrate consumption, product formation, Measurement of O2/CO2 uptake, evolution. Specific rates of consumption substrate & formation of product. Strategies for fermentation control. Computer controlled fermentations. Formation of heat, cooling requirements, Foam & its control. Oxygen uptake rate (OUR), Ka, Viscosity & its control. Scale up in Bioprocesses fermentations, Factors used in scale up	10
9	Quality Control, Quality assurance, Standard Operating Procedures (SOP) & Good Manufacturing Practices (GMP)	5
10	Product Recovery & Down Stream Processing in Fermentation & Bioprocess Technology. Solid-liquid separation (Flocculation, Filtration, Centrifugation), Cell disruption (Solid & liquid shear), Extraction, Precipitation, Distillation, Evaporation, Chromatographic separation, Adsorption, Concentration, Lyophilization, spray drying.	10
11	Industrial processes & applications; description of manufacture of enzymes (lipase, protease & nucleases), Antibiotics, amino acids, vitamins, ethanol, vaccines (FMD, DTP, New Castle disease), Single cell protein (Methanolic yeast, Spirulina).	20
12	Bioprocess Economics, Choice of process, process analysis, fixes & variable cost, Depreciation, Amortized costs, Selection of Pricing, Profitability, Scales of operations etc.	10

- 1 Principles of Fermentation Technology Whittaker & Stan bury, Pergamon Press
- 2 Bioprocess Engineering Principles Pauline Doran, Academic Press 1995
- 3 Operational Modes of Bioreactors, BIOTOL series Butter worth, Heinemann 1992
- 4 Bioreactor Design & Product Yield, BIOTOL series Butter worth Heinemann 1992
- 5. Bioprocess Engineering : Systems, Equipment & Facilities Ed. B. Lydersen, N.A. Delia & K.M. Nelson, John Wiley & Sons Inc,1993
- 6 Bioseparation & Bioprocessing Ed. G. Subramaniam, Wiley VCH, 1998
- 7 Product Recovery in Bioprocess Technology, 'BIOTOL series, Butter worth Heinemann 1992
- 8 Bioseparation : Downstraem Processing for Biotechnology Paul A. Belter, E.L Cussler, Wei-Shou Hu, Academic Press
- 9 Solvent Extraction in Biotechnology Larl Schuger, Spinger Verlag, 1994

Sr. No.	Торіс	Lecture
1	Plant Tissue Culture –	4
	Micropropagation technology	
	Haploids in agriculture	
	Glasshouse and precision cultivation	
2	Cryopreservation, slow growth & DNA banking of	7

Bb- 342 Biotechnology in Agriculture & Health

	germplasm, cybrids & hybrids	
3	Plant transformation, Methodology of gene transfer in plants, metabolic engineering, Application of plant transformation for selection of desirable phenotypes	8
4	Transgenic plants Genetically modified crops, GM food, ethical & social aspects, IRR & patenting, Risk assessment	7
5	Molecular markers, RFLP, QTL, AFLP, Green house & green home technology	8
6	Production of secondary metabolites <i>in vitro</i> , metabolic engineering for large-scale production of plant based drugs.	
7	Application of animal cell culture, organ culture, cell cloning & micromanipulation	7
8	Growing cells in serum free media, scaling up, Hybridoma & monoclonals, tissue engineering	8
9	Vaccines – Principles & practice	7
10	Diagnostic technology – PCR, RFLP, Molecular markers	8
11	Biosensors – Principles & applications	3
12	Recombinant products for human health	8
13	Human genome mapping – its implications in health and disease	7

- 1. Animal cell culture J. Paul
- 2. Plant biotechnology J Hammond & P. Mc Gravey, V.Yushibov, Springer-Verlag
- 3. Methods in cell biology Volume 57
- 4. Culture of animal cells R. Lan Freshny, Wiley less

Bb-343 Recombinant DNA Technology

a N	Торіс	Lecture
Sr. No		
1.	Milestones of genetic engineering- Historical prespective. Recombinant DNA Technology- Introduction	7
2.	Molecular tools and applications -restriction enzymes, ligases, polymerases, alkaline phosphatase.	10
3.	Gene cloning Vehicles- vector, properties of plasmids and phages, host – properties of host	10
4.	Transformation- techniques of introducing DNA, Selection of transformants & characterization	5
5.	Nucleic acid purification, yield, yield analysis, plasmid characterization, isolation strategies.	10
6.	DNA sequencing techniques– Maxam-Gilbert's method, Sanger's Dideoxy method, Automated DNA sequencing	10
7.	Restriction enzyme digestion and restriction mapping Southern and northern analyses.	8
8.	Genomic library-screening of recombinants	5

9.	Gene manipulations by site-directed mutagenesis -PCR	5
	Technology	
10.	cDNA library, reverse transcription, comparison between genomic and cDNA library	10
11.	Genome mapping, DNA fingerprinting	4
12.	Applications of Genetic Engineering, Recombinant DNA guidelines	6

- 1 Molecular Biology of the Gene: Waston J. D.
- 2 Molecular Biotechnology: Glick
- 3 Milestones in Biotechnology : Classic papers in Genetic Engineering: J. A. Davis, W. S. Resnikoff
- 4 DNA Cloning A Practical approach: D. M. Glover and B. D. Hames
- 5 Principles of Gene Manipulation & Genomics Primrose and Twyman (2006, 7th Edition)
- 6 Molecular cloning a laboratory manual Sambrook and Russell (Vol. 1-3)

Bb- 344 Techniques in Genetic Engineering (Practical)

Sr. No.	Торіс	Practical (30P)
1.	Isolation of plasmid DNA & Gel electrophoresis	2P
2.	Genomic (Plant/Animal) DNA- Isolation and quantitation	2P
3.	DNA Ligation	2P
4.	Preparation of Component Cells	1P
5.	Transformation of E. coil and selection of recombinants.	4P
6.	Agrobacterium-mediated transformation of plant cells	2P
7.	Colony PCR of recombinant and analysis	2P
8.	Restriction mapping of recombinant DNA	3P
9.	Southern blotting techniques	4P
10.	Searching for gene and protein sequences and accessing information from web, and databases	4P
11.	Information from genomes, BLAST, FASTA	2P
12.	Expression of genes in E. coli.	2P

------ X ------