
 1

Syllabus for M.C.A. / M.Sc. /M.Tech. w.e.f. 2008-09

First three semesters of the M.C.A., M.Sc. and M.Tech courses are same in content and
prerequisite/co-requisite requirements.

Semester 1 (5 Credits Each Course)

• CS-101 Introduction to Programming

• CS-102 Computer Organization

• CS-103 Mathematical Foundations

• CS-104 Concrete Maths & Graph Theory

• CS-105 Database Management System

Semester 2 (5 Credits Each Course)

• CS-201 Numerical Methods

• CS-202 Data Structures & Algorithms

• CS-203 Low-level Programming

• CS-204 Operating Systems

• CS-205 Science of Programming

Semester 3 (5 Credits Each Course)

• CS-301 Design & Analysis of Algorithms

• CS-302 Theoretical Computer Science

• CS-303 Computer Networks

• CS-304 Systems Programming

• CS-305 Distributed computing

Semester 4 (MCA Only) (5 Credits Each Course)

• CS-401 Computer Graphics

• CS-402 Modelling and Simulation

• CS-403 Operations Research

• CS-404 Software Engineering - I

• CS-405 Elective *

Semester 5 (MCA Only) (25 Credits)

• CSMCP: Full-time Industrial Training

Semester 6 (MCA Only) (5 Credits Each Course)

• CS-601 Programming Paradigms

• CS-602 Software Engineering – II

• CS-603 Applications of Software Engineering and Programming Paradigms

• CS-604 Elective *

• CS-605 Elective *

 2

Semester 4 (M.Sc. Only)

• CS-411 Software Engineering (5 Credits)

• CS-601 Programming Paradigms (5 Credits)

• CS-405 Elective * (5 Credits)

• CS-MSP Degree Project (10 Credits)

Semester 4 (M.Tech Only)

• CS-411 Software Engineering (5 Credits)

• CS-601 Programming Paradigms (5 Credits)

• CS-405 Elective * (5 Credits)

• CS-MTP Degree Project (10 Credits)

Elective Courses (offered in the last few years)

∗∗∗∗ Genetic Algorithms

∗∗∗∗ Management Information Systems

∗∗∗∗ Object Oriented Modelling and Design

∗∗∗∗ Motivation and Emotion

∗∗∗∗ Windows Programming

∗∗∗∗ Compiler Construction

∗∗∗∗ Advanced Algorithms

∗∗∗∗ Network Security

∗∗∗∗ System Administration

∗∗∗∗ COM - Component Object Modelling

∗∗∗∗ Advanced Networks

∗∗∗∗ Program Analysis

∗∗∗∗ Distributed Systems

∗∗∗∗ Machine Learning

∗∗∗∗ Programming in Real World

∗∗∗∗ Information Security

∗∗∗∗ Grid Computing

∗∗∗∗ Enterprise Application Integration

∗∗∗∗ Information Audit and Security

∗∗∗∗ Data Mining

∗∗∗∗ Procedural Texture Generation and Shading

 3

CS-101 - Introduction to Programming

• Contents:
Two paradigms are used as vehicles to carry the ideas and execute practical for this course the
functional and the imperative.

The Functional Paradigm:
The central issue here is to be able to use the computer as a high-level tool for problem
solving. The paradigm conveyed may be simply expressed as:

A modern non-strict functional language with a polymorphic type system is the medium for this
part. The currently used language is the internationally standardized language, Haskell.

Important ideas that are to be covered include:

1. Standard Constructs
Function and type definition, block structure.
Guarded equations, pattern matching.
Special syntax for lists, comprehension.

2. Standard Data Types Fluency is to be achieved in the standard data types: numbers,
Boolean, character, tuple, list.
List programs in an algebraic vein.
Lists in the context of general collections sets, bags, lists, and tuples. (MF)

3. Calculus
A direct way for denoting functions.

4. First-Class-ness
All values are uniformly treated and conceptualized.

5. Higher Order Functions Use of first class, higher order functions to capture large
classes of computations in a simple way. An understanding of the benefits that accrue
modularity, flexibility, brevity, elegance.

6. Laziness The use of infinite data structures to separate control from action.
7. Type discipline
8. Polymorphism:

The use of generic types to model and capture large classes of data structures by
factorizing common patterns.

9. Inference:
The types of expressions may be determined by simple examination of the program
text.
Understanding such rules.

10. User defined types:
User defined types as
a means to model
a means to extend the language
a means to understand the built in types in a uniform framework.

11. Concrete types:
Types are concrete. i.e. values that are read or written by the system correspond
directly to the abstractions that they represent. More specifically, unlike abstract types
which are defined in terms of admissible operations, concrete types are defined by
directly specifying the set of possible values.

12. Recursion
Recursive definitions as
a means of looping indefinitely
a structural counterpart to recursive data type definitions

 4

a means to understand induction in a more general framework than just for natural
numbers

13. Operational Semantics
Functional programs execute by rewriting.
calculus as a rewriting system
Reduction, confluence, reasons for preferring normal order reduction.

14. Type Classes
Values are to types as types are to classes. Only elementary ideas.

The Imperative Paradigm:
The imperative paradigm is smoothly introduced as follows:

Worlds The Timeless World World of Time

Domain Mathematics Programming

Syntax Expressions Statements

Semantics Values Objects

Explicit Data Structures Control Structure

Think with Input Output relations State Change

Abstractions Functions Procedures

Relation Denote programs Implement functions

In the following we spell out some of the points of how FP translates into Imp P. The examples
may be analogized from say how one would teach assembly language to someone who
understands structured programming.

15. Semantic relations The central relation is that imperative programming's denotational
semantics is FP, FP's operational semantics is imperative programming.

16. Operational Thinking
IN FP data dependency implicitly determines sequencing whereas in Imp P it is done
explicitly. Advantages and disadvantages of operational thinking.

17. Environment
In imperative programming there is a single implicit environment memory. In FP there
are multiple environments; which could be explicit to the point of first class-ness (the
value of variables bound in environments could be other environments). Use of
environments to model data abstraction, various object frameworks, module systems.

18. Semi Explicit Continuation
Explicit in the sense that goto labels can be dealt with first-classly (as in assembly), but
not explicit in the sense of capturing the entire future of a computation dynamic
execution of a code block may be 'concave'.

19. Recursion iteration equivalence
General principles as well as scheme semantics of tail recursion.

20. Type Issues
Monomorphic, polymorphic and latent typing: translating one into another.

21. Guile
A variety of vehicles have been used for the imperative paradigm, e.g. Pascal, C, Java,
Tcl. The current choice is Scheme in the guile dialect because it gives a full support for
the functional and the imperative paradigm. In fact Guile has been chosen over C

 5

because the single data structure in guile expressions is universal (aka XML) and thus
imperative and functional thinking do not quarrel with data structure issues.

Orthogonal kinds of abstractions, which are usually considered 'advanced', such as
functional, higher order functional, object-oriented, stream based, data driven,
language extensions via eval, via macros, via C can be easily demonstrated. In fact,
once guile has been learnt, it is much faster to pick up C in the subsequent semester.

Note: In addition to being a system programming and general purpose language Guile
is also a scripting, extension and database programming language because it is the
flagship language for FSF (The free software foundation).

• References:
Introduction to Functional Programming, Bird and Wadler, Prentice Hall
Algebra of Programs, Bird, Prentice Hall
Structure and Interpretation of Computer Programs, Abelson and Sussman, MIT Press
Scheme and the Art of Programming, Friedmann and Haynes, MIT Press
Equations Models and Programs,, Thomas Myers, Prentice Hall
Algorithms + Data Structures = Programs, N Wirth
Functional Programming, Reade
Programming from First Principles, Bornat, Prentice Hall
Discrete Math with a computer, Hall and Donnell, Springer Verlag
Guile Reference Manual, www.gnu.org

 6

CS-102 Computer Organization

• Contents :
1. From a calculator to a stored-program computer:

Internal structure of a calculator that leads to this functionality. Machine language and
programs writing a sequence of instructions to evaluate arithmetic expressions.
Interpreting the computer’s behavior when instructions are carried out: the fetch-
decode-execute cycle as the basic or atomic unit of a computer’s function. Control unit:
that performs the fetch-decode-execute cycle.

2. Parts of a computer :
Processor (CPU), memory subsystem, peripheral subsystem. The memory interface:
memory subsystem minus the actual memory. Ditto with the peripheral interface. Parts
of these interfaces integrated with the processor, and the remainder contained in the
chip-set that supplements the processor. Two main parts of the processor apart from
these interfaces: data-path and control (which supervises the data-path) An important
aim of the CO course is to understand the internals of these parts, and the interactions
between them.

3. Instruction set formats :
Three-address and one-address instructions and the corresponding data-path
architectures, namely, general-purpose register architecture (the classic RISC) and
accumulator architecture. Zero-address instructions and the stack architecture. Two-
address instructions, e.g., in the Pentium.

4. Introductory Machine :
Modern computer design, dating back to the 1980’s, marks a radical shift from the
traditional variety. The new style has given rise to reduced instruction set computers
(RISC), as opposed to the older complex instruction set computers (CISC). The MIPS
R2000, arguably the classic RISC machine,

5. Basic Electronics :
Just those concepts needed to understand CO: combinational functions and their
implementation with gates and with ROM’s; edge-triggered D-flip-flops and sequential
circuits; Implementation of data-path and control, using the basic ideas developed so
far.

6. Memory hierarchy :
Performance tradeoffs: fast, small, expensive memories (static RAM); slower, larger,
inexpensive memories (DRAM); very slow, very large and very cheap memories
(magnetic and optical disks). Ideal memory: fast, inexpensive, unbounded size. Ways
of creating illusions or approximations of ideal memory. On-chip and off-chip cache
memories, redundant arrays of independent disks (RAID).

7. Pipelining :
Improving the performance of a computer and increasing the usage of its subsystems
by executing several instructions simultaneously. Analogy to assembly line
manufacture of cars. Influence of instruction set design on ease of pipelining.
Difficulties with pipelining: structural, data and branch hazards. Branch prediction.

8. Peripherals :
Interconnecting peripherals with memory and processor.

References:
Computer Organization and Design, Patterson and Hennessey
Computer Structures, Ward and Halstead
Digital Design: Principles and Practices, Wakerley

 7

CS-103 Mathematical Foundations
 Contents :

1. Logic: Propositional Calculus: Alternative styles: Boolean Algebra, truth tables,
equational, deduction, Formal systems, Syntax and semantics, Proof theory and Model
theory, Consistency and Completeness of different systems.

2. Self-reference, paradoxes, Gödel’s theorem Alternative Logics e.g. modal, dynamic,
intuitionistic, situational Applications: Prolog, Program Verification

3. Binding Constructs:
Abstraction of lambda, for all, program function etc. Free and bound variables,
substitution. Common laws.

4. Set Theory:
Definitions, proofs, notations, building models
Applications: Z, Abrial's machines

5. Well formed formulae:
Ordinary definition, refinement to types, necessity and limitation of computable type
checking.

6. Category Theory:
Problems with Set theory constructive, conceptual and type and their categorical
solution Applications: functional programming equivalents of categorical results

7. Relations:
3 alternative views of foundations of relations: as Cartesian products, as Boolean
functions (predicates), as power set functions 3 basic types - equivalences, orders,
functions - properties and applications in databases

8. Calculus (Closely integrated with IP)
Explicit and Implicit definitions. The 3 ingredients of function definition: naming,
abstraction/quantification, property/predicate.
Mathematically - separates the 3
Computationally - delays by transforming computation into recopies Philosophically - enriches
the programmer's world by moving programs from syntax to first-class semantics

9. Algebraic Structures:
Development: Logic, Set Theory, Cartesian Products, Relations, Functions, Groupoids, Groups,
Many sorted Algebras, Lattice Theory Applications to cryptography, denotational semantics,

cryptography

• References:
Logic for CS by Gallier
Discrete Math by Tremblay Manohar
Discrete Math by Stanat
Laws of Logical Calculi by Morgan
Category Theory tutorial by Hoare
Category Theory by Burstall and Rydheard
Computer modeling of mathematical reasoning by Bundy
Shape of mathematical reasoning by Gasteren
Predicate Calculus and Program Semantics by Dijkstra
Algebra of Programming by Richard Bird
Functional Programming with Bananas, Lenses and Barbed Wire by Fokkinga.
http://wwwhome.cs.utwente.nl/’fokkinga/#mmf91m
A Gentle Introduction to Category Theory the calculational approach by Fokkinga
http://wwwhome.cs.utwente.nl/’fokkinga/#mmf92b
A Logical Approach to Discrete Math by Gries and Schneider
Practical Foundations of Mathematics by Paul Taylor
Conceptual Mathematics by Lawvere
Practical Foundations of Mathematics by Taylor
Internal Documents of R.P.Mody on notation, style, combination

 8

CS-104 Concrete Math and Graph Theory

• Contents :
Graph Theory

1. Graphs :
Definition and examples of graphs
Incidence and degree, Handshaking lemma, Isomorphism
Sub-graphs, Weighted Graphs, Eulerian Graphs, Hamiltonian Graphs
Walks, Paths and Circuits
Connectedness algorithm, Shortest Path Algorithm, Fleury's Algorithm
Chinese Postman problem, Traveling Salesman problem

2. Trees :
Definition and properties of trees
Pendent vertices, centre of a tree
Rooted and binary tree, spanning trees, minimum spanning tree algorithms
Fundamental circuits, cutsets and cut vertices, fundamental cutsets, connectivity and
separativity, max-flow min-cut theorem

3. Planar Graphs :
Combinational and geometric duals
Kuratowski's graphs
Detection of planarity, Thickness and crossings

4. Matrix Representation of Graphs :
Incidence, Adjacency Matrices and their properties

5. Coloring :
Chromatic Number, Chromatic Polynomial, the six and five color theorems, the four
color theorem

6. Directed Graphs :
Types of digraphs, directed paths and connectedness, Euler digraphs, Directed trees,
Arborescence, Tournaments, Acyclic digraphs and decyclication

7. Enumeration of Graphs :
Counting of labeled and unlabeled trees, Polya's theorem, Graph enumeration with
Polya's theorem

Concrete Mathematics

8. Sums :
Sums and recurrences, Manipulation of sums, Multiple Sums, General methods of
summation

9. Integer Functions :
Floors and ceilings, Floor/Ceiling applications, Floor/Ceiling recurrences, Floor/Ceiling
sum

10. Binomial Coefficients :
Basic Identities, Applications, Generating functions for binomial coefficients

11. Generating Functions :
Basic maneuvers, Solving recurrences, Convolutions, Exponential generating functions

12. Asymptotics :
O notation, O manipulation, Bootstrapping, Trading tails

• References
Graph Theory with Applications, Bondy, J. A. & U. S. R. Murty [1976], MacMillan
Graph Theory with Applications to Engineering and Computer Science, Deo, Narsing [1974],
Prentice Hall
Concrete Mathematics, A Foundation for Computer Science, Graham, R. M., D. E., Knuth & O.
Patashnik [1989], Addison Wesley
Notes on Introductory Combinatorics, Polya, G. R. E. Tarjan & D. R. Woods [1983], BirkHauser
Graph, Networks and Algorithms, Swamy, M. N. S. & K. Tulsiram [1981], John Willey

 9

CS-105 Database Management System

• Contents :
1. DBMS objectives and architectures
2. Data Models

Conceptual model, ER model, object oriented model, UML Logical data model,
Relational, object oriented, object relational

3. Physical data models
Clustered, unclustered files, indices(sparse and dense), B+ tree, join indices, hash and
inverted files, grid files, bulk loading, external sort, time complexities and file selection
criteria.

4. Relational database design
Schema design, Normalization theory, functional dependencies, higher normal forms,
integrity rules, Relational operators

5. Object oriented database design
Objects, methods, query languages, implementations, Comparison with Relational
systems, Object orientation in relational database systems, Object support in current
relational database systems, complex object model, implementation techniques

6. Mapping mechanism
conceptual to logical schema, Key issues related to for physical schema mapping

7. DBMS concepts
ACID Property, Concurrency control, Recovery mechanisms, case study Integrity,
Views & Security, Integrity constraints, views management, data security

8. Query processing, Query optimization -
heuristic and rule based optimizers, cost estimates, Transaction Management

9. Case Study
ORACLE/POSTGRES DBMS package: understanding the transaction processing
Concurrency and recovery protocols, query processing and optimization mechanisms
through appropriate queries in SQL and PLSQL.

10. Web based data model -
XML, DTD, query languages

11. Advanced topics
Other database systems, distributed, parallel and memory resident, temporal and
spatial databases. Introduction to data warehousing, On-Line Analytical Processing,
Data Mining. Bench marking related to DBMS packages, database administration

References:
Database System Concepts, Silberschatz, Korth and Sudershan, McGraw Hill
Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke, 2002.
Relational Database Index Design and the Optimizers by Tapio Lahdenm¨aki Michael
Leach, John Wiley
PostgreSQL, Sams Publications
Principles of Database Systems Vol. I & Vol II, J. D. Ullman, Rockville, MD: Computer
Science Press, 1998

 10

CS-201 Numerical Methods

• Contents :
1. Introduction to Complex Variable theory
2. Matrix Algebra
3. Numerical Solution of Linear Equations. Direct Methods and Iterative Methods. Eigen

value and Eigen vector calculation.
4. Solutions of Systems of Nonlinear Equations
5. Iteration : Convergence of iteration, Error, Accelerating Convergence, Aitkin's Method,

Quodiotic Conveyance, Newton's Method, Diagonal Aitken's Method.
6. Iteration for system of equations: Contraction Mapping, Lipschitz Condition, Quadratic

Convergence, Newton's Methods, Bairstow's Method. Linear
7. Difference Equations : Particular solution of Homogeneous Equation of order two,

General Solution, Linear Dependence, Non Homogeneous Equation of order two,
Linear Difference Equation of Order N, System of Linearly independent Solutions.

8. Propagation of roundoff error
9. Interpolation and approximation

Interpolating Polynomials, Existence, Error and Convergence of Interpolating.
Polynomial Constuction of Interpolating Polynomials from ordinates and by using
differences.

Notes :
The course will start by teaching Complex Variable Theory and asking the students to
read the Matrix Algebra by themselves. This will be followed by a test of these topics.
The remaining topics will now be covered more or less in the same order as listed in
the syllabus.

• References
Numerical Methods for Scientists and Engineers,Chapra, TMH
Elements of Numerical Analysis, Peter Henrici, John Wiley & Sons.
Numerical Linear Algebra, Leslie Fox, Oxford University Press.

 11

CS-202 Data and File Structures

• Prerequisite: (Student should have undergone the prerequisite course)
CS101(Introduction to Programming)

• Course Overview

 Algebraic view Algorithmic view

Data

Data Structures, Mathematical

Definitions, Laws, Manipulations, MF

relations

Storage Structures, Engineering

Considerations related to CO, LLP

Code

Recursive and closed form program

specification. May be implementable in

a high level language like gofer or may

not be implementable directly. The

intrinsic value of specification apart

from programs.

Explicit control through built in control

structures like sequencing, if, while

Engineering efficient implementation of

correct specifications

• Contents
The course is organized according to the philosophy in the table below. The case
studies/examples include but need not be limited to

1. Lists: Various types of representations.
Applications: symbol tables, polynomials, OS task queues etc

2. Trees: Search, Balanced, Red Black, Expression, and Hash Tables
Applications: Parsers and Parser generators, interpreters, syntax extenders

3. Disciplines: Stack, queue etc and uses
4. Sorting and Searching: Specification and multiple refinements to alternative

algorithms
5. Polymorphic structures: Implementations (links with PP course)
6. Complexity: Space time complexity corresponds to element reduction counts. Solving

simple recurrences.

• Course Organization

 Algebraic world Algorithmic world

Correctness Bird Laws, Category Theory Refinement, Predicates

Transformation Via Morgan Refinement

ADTs and

Views

o Formulation as

recursive data types

o Data structure

invariants

o Principles of

interface design

o Algebraic Laws

o C storage

o Representation

Invariants

o Addressing Semantics

o Use of struct, union and

other assorted C stuff

o Maximizing abstraction

 12

by macros, enums etc

Mapping Via transforms and coupling invariants

Code o Pattern

Matching based

recursive definitions

o Exhaustive set

of disjoint patterns

correspond to total

functions

o Correspond to

runtime bug free

programs

o Recursive Code

structures follow from

recursive data

structures

o Refinement of recursive

definitions into iterative

algorithms

o Techniques (Bentley)

for improving algorithms e.g.

sentinel, double pointers, loop

condition reduction, strength

reduction etc.

Continuations o Control as Data

o Co routines vs.

subroutines

o General

framework for escape

procedures, error

handling

o Loops

o Functions @

o Stack based software

architecture

Error Policy

Types

o Patterns

o Laws

o Deliberate

Partiality

Predicate Transformer Semantics for

control

Modules Category Theory Files, make

• References:
Data Structures and Algorithms, Aho, Hopcroft and Ullman, Addison Wesley Inc.
Data Structures, Kruse, Prentice Hall
Programming from Specifications, Carroll Morgan, Prentice Hall
Algebra of Programs, Bird, Prentice Hall
Programming Perls, Writing Efficient Programs, John Bentley, Prentice Hall
Structure and Interpretation of Computer Programs, Abelson Sussmann, MIT Press
Functional Programming Henderson, Prentice Hall
The Art of Programming Vol. 1. & Vol. 3, D. E. Knuth, Addison Wesley Inc

 13

CS-203 Low-Level Programming

• Contents
1. C Language Basics
2. Assembly Language structure, syntax, macros
3. Use of linker, librarian, object editor(s), debugger
4. C Assembly Interfacing coding conventions, translations of arrays, structs, call return

sequences. Mixed code.
5. 8086 architecture going up to P4. Survey of Intel architecture history
6. Inline Assembly, Floating point operations
7. Machine language programming: Assembling and disassembling, clock cycle counting,

instruction length calculation. Philosophy and history of instruction format choices.
Combinatorial considerations and limitations.

8. I/O Classification: Memory mapped vs. IP mapped. Polled, Interrupt, DMA
9. Interrupts: h/w and s/w. ISRs. Assembly and C. Minimization and handling of non

determinism Separation of binding times: Hard-coding of chip, board, OS, system s/w,
user levels

10. OS use: system call interface
11. OS implementation: Start up scripts, Basics of protected mode and device drivers
12. Chip Level Programming

References
Professional Assembly Language, Richard Blum, Wrox
Guide to Assembly Language Programming, S P Dandamudi, Springer
Linux Device Drivers, 3rd Edition By Rubini, Orielly
 Art of Assembly, Randy Hyde
Intel Manuals
OS, chip manuals
Compiler and System S/w manuals
C Programming, Kernighan and Ritchie

 14

CS-204 Operating Systems

• Contents :
1. Simple computer systems made up of a single processor and single core memory

spaces and their management strategies.
2. Processes as programs with interpolation environments. Multiprocessing without and

with IPC. Synchronization problems and their solutions for simple computer systems.
3. Memory management: segmentation, swapping, virtual memory and paging.

Bootstrapping issues. Protection mechanisms.
4. Abstract I/O devices in Operating Systems. Notions of interrupt handlers and device

drivers. Virtual and physical devices and their management.
5. Introduction to Distributed Operating Systems. Architecture designs for computer

systems with multiple processors, memories and communication networks. Clocking
problem and Lamport's solution.

6. Illustrative implementation of
� bootstrap code,
� file systems,
� memory management policies etc.

•••• References
A. S. Tanenbaum, Modern Operating Systems, Pearson Education
Galvin, Operating Systems Concepts, Wiley
Nutt, Operating System, Pearson Education
A. S. Tanenbaum, Distributed Operating Systems, Prentice Hall
M. Singhal & N. Shivaratri, Advanced Concepts in Operating Systems, McGraw Hill
Understanding the Linux Kernel, 2nd Edition By Daniel P. Bovet, Oreilly
The Design of Unix Operating System Maurice Bach, Pearson

 15

CS-205 Science Of Programming

• Contents :
1. Verification : verification of imperative programs as in Gries/Dijkstra.
2. Specific techniques : Invariant assertive method, sub-goal induction method.
3. Verification of pointer programs.
4. Function Program verification: Induction on data-types, infinite data structure induction
5. Specification : Use of 'Z' as a model theoretic language.
6. Clear as an example of a model axiomatic/categoric language.
7. Transformation/Refinement
8. Homomorphic transformations, refinement Calculus Theory & application of

List/Functional
9. Calculus
10. Theory Logics of Programs
11. Hoare Logics, Dynamic Logic
12. Temporal Logic Application to OOP

References:

Functional Programming, Henson, Blackwell scientific
Science of Programming, Gries, Narosa
Discipline of Programming, Dijkstra, Prentice Hall
Method of Programming, Dijkstra & Feijen, Addison Wesley
Specification Case Studies, Hayes, Prentice Hall
Software Specification, Gehani & Mcgettrick, Addison Wesley
Program Specifications & Transformations, Meertens, Prentice Hall
Partial Evaluation and Mixed Computation, Ershov, Bjorner & Jones, North Holland.
Programs from Specifications, Morgan, Prentice Hall
Lectures of constructive functional programming, Bird, Lecture notes, PRG Oxford
Introduction to the theory of lists, Bird, Lecture notes, PRG Oxford
A calculus of functions for program derivation, Bird, Lecture notes, PRG Oxford
Introduction to Formal Program verification, Mili, Van Nostrand Reinhold

 16

CS-301 Design and Analysis of Algorithms

• Contents :
1. String processing
2. Knuth-Morris-Platt Algorithm, Boyer-Moore Algorithm, pattern Matching.
3. Graph and geometric Algorithms
4. DFS, BFS, Biconnectivity, all pairs shortest paths, strongly connected components,

network flow
5. Ford-Fulkerson Algorithm, MPN Algorithm, Karzanov Algorithm, Maximum Matching in

bipartic graphs
6. Geometric Algorithms
7. Backtracking, Dynamic Programming, Branch & Bound, Greedy
8. Use of three paradigms for the solution of problems like Knapsack problem, Traveling

Salesman etc.
9. Lower Bound Theory
10. Sorting, Searching, Selection
11. Introduction to the theory of non-Polynomial Completeness Non-Deterministic

Algorithms, Cook's Theorem, clique decision Problem, Node cover decision problem,
chromatic number, directed Hamiltonian cycle, traveling salesman problem, scheduling
problems.

•••• References:
Introduction to Algorithms, Cormen, Leiserson, Rivest, MIT Press and McGraw Hill, 1990

 Algorithms, Robert Sedgwick, Addison Wesley Publishing Company, 1988
The Design and Analysis of Computer Algorithms, A. V. Aho, J. E. Hopcroft, J. D. Ullman,
Addison Weslay, Reading, Mass, 1974
Algorithm Design: Foundations, Analysis, and Internet Examples Michael T. Goodrich, Wiley
Computer Algorithms: Introduction to Design & Analysis, Sara Baase, Allen Van Gelder,
Addison Wesley Pub. Co., 2000
Computer Algorithms, Sara Baase, Addison Wesley, 1988
Combinational Algorithms (Theory and Practice) , F. M. Reingold, J. Nivergelt and N. Deo,
Prentice Hall Inc., Engiewood Cliffs, N. J., 1977
Combinational Algorithms, T. C. Hu, Addison Wesley, 1982

 17

CS - 302 Theoretical Computer Science

• Prerequisite: (Student should have undergone the prerequisite course)
CS-103 (Mathematical Foundation)

• Contents
1. Low Power Formalisms Combinational Machines inadequacy
2. FSM as acceptor, generator, regular expressions and equivalence
3. PDA brief idea, relation between CFG's and programming languages (informal)
4. Full Power Mechanisms

(i) Recursive functions
(ii) Turing machines cost models for the RAM
(iii)Post systems/Lambda Calculus/Markov algorithms
(iv) (any one) Use must be stressed along with mutual equivalences.
Any of the (iii) should be done so as to give a theoretical backing to the practical notion
of 'non-Von-Neumann' language.

5. Self References :
Use mention distinctions, 'escape methods' for self referencing quines, self references
in the expression domain, the formulation of the 'halting problem' and decidability in C
and Scheme

6. Recursive Data :
Recursive, Enumerable sets, generators and recognizers formulated as recursive types
in Haskell, 'S' expressions in Scheme.

7. Complexity Basic ideas measuring time usage, time hierarchies
8. Deterministic and Nondeterministic computations.
9. Ability of a mechanism to solve a problem. Formalization of the problem. Church Turing

thesis.
10. Universality
11. Equations in language spaces

Operational approach
Denotational approach

References:
Introduction to the theory of computation, Sipser, Thompson Learning
Introduction to Computer Theory, Cohen, Wiley
Computabilities and complexity from a programming perspective, Niel Jones, MIT Press
The Quine page, Gary P. Thompson, at http://www.myx.net/’gthompso/quine.htm
Computation and Automata, Salomaa, CUP
Switching and finite Automata Theory, Kohavi, ZVI, Tata McGrawHill
Finite and Infinite Machines, Minsky, Prentice Hall
Post Systems, Krishnamurthi E. V.
Godel, Escher, Bach, Hoffstader, Vintage Books
Introduction to Recursive Function theory, Cutland, CUP
Handbook of TCS Vol A,B, Jan Van Leeuvven ed, Elsevier

 18

CS-303 Computer Networks

• Contents :
1. Network architecture, ISO-OSI Reference model
2. Network Topology:
3. Topology design problem, connectivity analysis, delay analysis, backbone design, and

local access network design.
4. Physical Layer, Transmission media, digital transmission, transmission & switching,
5. Integrated Services Digital Network.
6. Data Link Layer: Design issues, protocols, CRC
7. Network Layer: Design issues, routing algorithm, congestion control, Packet switched

networks,
8. X.25 standards, ATM networks
9. Transport Layer: TCP, UDP, Design issues
10. Session Layer: Design issues, client server model, remote procedure calls
11. Local Area Networks, IEEE 802 standards for LAN (Ethernet, token ring, optical fiber,

wireless)
12. Application layer environment
13. Application layer architecture, building applications with sockets, DNS, HTTP, SMTP,

LDAP, NFS, NIS, SNMP, WAP Mobile computing
14. Internet, extranet, Virtual Private Network (includes tunneling, internet work routing and

fragmentation)
15. Internet Security: Firewalls, SSL, Popular encryption protocols

• References :
Data and communications, 6th Edn., W. Stallings, Prentice Hall, 2000
Computer networks: A systems approach, 2nd Edn., Peterson and Davie, Morgan Kaufman
Computer Networks, 4th Edn., A. S. Tanenbaum, Pearson Education
UNIX Network Programming Volume 1 Stevens , Adison Wesley2003

 19

CS-304 Systems Programming

• Contents :
1. The four dimensions of a programming activity as the basis for systems programming:

concept, program generators (humans or other programs), sources and deliverables.
For a variety of concepts, a set of program generators generate a set of (possibly
overlapping) sources and produce a set of deliverables (executables, libraries,
documentation).

2. Interpretation as the fundamental activity in Software. Interpreters and interpretation.
Program layout strategies on a Von Neumann machine (e.g. Pentium). Division of the
final interpretation goal into subtasks and establishing interface export by producer tool
and import by consumer tool. Compiler and Assembler translation phases

3. Linkers and Loaders
Linker as a layout specifying producer and loader as a layout specification consumer.
Layout specification strategies: fixed and variable (relocatable and self-relocatable).
Layout calculations. Dynamic linking and overlays. Executable format definitions.
Object file format as the interface between the compiler and the linker. Few Object file
formats like MSDOS, Windows and ELF. Object file manipulation utilities. Source files
related system software. Syntax manipulation (lex and yacc). Editors, version
controllers. Version control on object and executable files (e.g. version support for
modules in the Linux kernel).

4. Support tools:
Literate programming (weave, tangle), source browsers, documentation generators,
make, GNU auto-conf, CVS, bug reporting systems. IDEs for systematic use of system
tools. Flow graphers, Debuggers for analysis. Package builders, installers, package
managers for deployment

5. The notion of binding time as instant of achieving the mapping between a symbol and a
value. Overlays and remote procedure call as memory space influenced between
symbol and value.

•••• References :
Hopcroft, Sethi and Ullman, Compiler Principles, Addison Wesley
John Levine, Linkers and Loaders, http://www.iecc.com
System Software: An Introduction to Systems Programming, Leland L. Beck Pearson Education
info lex and info bison on GNU/Linux Systems
H. Abelson and G. Sussmann, Structure and Interpretation of Computer Programs (SICP), MIT
Press
Hopcroft and Ullman, Introduction to Automata theory, Languages and Computation, Narosa
Publishing
The details of the Pentium can be found in various manuals at
ftp://developer.intel.com.design/Pentium4/manuals/
Basic Architecture: 24547012.pdf. Instruction Reference: 24547112.pdf
System Programming Guide: 24547212.pdf

 20

CS-305 Distributed computing

Contents

• What is distributed computing?

• Why distributed computing?

• Concepts of time, logical and physical clocks

• Concurrency: including multithreading
o barriers, locks, spinlocks, how and why

• Basics of communication

• Inter Process Communication: RPC, message passing, client-server systems ...

• Stateless and stateful C-S systems

• Transactions

• Web services

• Why do systems fail, and reliability issues

• High availability and scalability

• Membership services and group comm. protocols

• P2P systems

• Distributed Applications

• All the above is to be conveyed using the contemporary technology. Suggested technologies
for the current period are LAMP, J2EE or .NET stacks

References:
George Coulouris, Jean Dollimore and Tim Kindberg, Distributed Systems: Concepts and Design,
Addison-Wesley
Jie Wu, Scalable Computing: Practice and Experience, CRC Press
Gerard Tel, Introduction to Distributed Algorithms, Cambridge University Press
Sacha Krakowiak, Advances in Distributed Systems: Advanced Distributed Computing, From
Algorithms to Systems, Springer
Nicolai Josuttis, SOA in Practice: The Art of Distributed System Design (In Practice), O'Reilly

 21

CS-401 Computer Graphics

• Contents:
1. Introduction, Image Processing as Picture Analysis and Computer Graphics as Picture

Synthesis, Representative Uses of Computer Graphics, Classification of Applications.
2. Raster Graphics Features, raster algorithms including primitives like lines, circles,

filling, clipping in 2D, etc.
3. Geometric transformations in 2D for 2D object manipulation, coordinate transformations

and their matrix representation, Postscript language to demonstrate these concepts.
4. The 3rd dimension, it's necessity and utility, transformations and modeling in 3D,

geometric modeling with an introduction to curves and surfaces for geometric design,
including but not restricted to Bezier, B’spline, Hermite representations of curves and
surfaces

5. From 3D back to 2D projections, hidden surface elimination and the viewing pipeline.
Achromatic Light, Chromatic Color, Color Models for Raster Graphics, Reproducing
Color, Using Color in Computer Graphics

6. Rendering Techniques for Line Drawings, Rendering Techniques for Shaded Images,
Aliasing and Anti-aliasing, Illumination Models local models like Phong, CookTorrance
and global models like ray tracing and radiosity, shading detail like textures, their
generation and mapping, bump mapping and similar techniques.

7. Depending on time availability, one of volume rendering, modeling of natural objects,
introduction to 3D animation may be covered depending on student and instructor
inclination

• References :
Computer Graphics: Principles and Practice, J. Foley, A.van Dam, S. Feiner, J.Hughes,
Addison Wesley Pub., 1997
Computer Graphics, D. Hearn, M. P.Baker, Prentice Hall, 1997
Computer Graphics, F. S. Hill Jr., Macmillan Pub, 1990
Curves and Surfaces for Computer Aided Geometric Design, 4th Edn., G. Farin, Academic
Press, 1997
Mathematical Elements for Computer Graphics, 2nd Edn., D. Rogers, McGraw Hill Pub., 1990
The Mathematical Structure of Raster Graphics, E. Fiume, Academic Press, 1989
Graphics Gems , Vol. 15, Academic Press
The Rendering Equation, J. Kajiya, SIGGRAPH 1986, 143’150

 22

CS-402 Modeling and Simulation

• Contents :
1. Introduction to Systems modeling concepts, continuous and discrete formalisms
2. Framework for Simulation and Modeling, modeling formalisms and their simulators,

discrete time, continuous time, discrete event, process based.
3. Hybrid systems and their simulators
4. Review of basic probability, probability distributions, estimation, testing of hypotheses
5. Selecting input probability distributions, models of arrival processes
6. Random number generators, their evaluation, generating random variates from various

distributions.
7. Output analysis, transient behavior, steady state behavior of stochastic systems,

computing alternative systems, variance reduction techniques.
8. Verification and Validation

• References :
Discrete Event System Simulation, 3rd ed., J. Banks, J. Carson, B. Nelson, D. Nicol, Prentice
Hall Pub., 2001
Simulation Modeling and Analysis, 3rd ed., A. Law, W. Kelton, McGraw Hill Pub., 2000
Simulation with Arena, 2nd ed., W. Kelton, R. Sadowski, D. Sadowski, McGraw Hill Pub., 2002
Theory of modeling and Simulation, 2nd ed., B. Zeigler, H. Praehofer, T. Kim, Academic Press,
2000
Object Oriented Simulation with Hierarchical Modular Models, B. Zeigler, Academic Press,
1990
Reality Rules, Vol. I and Vol. II, J. Casti, John Wiley Pub., 1996

 23

CS-403 Operations Research

• Contents:
1. The nature of O.R., History, Meaning, Models, Principles Problem solving with

mathematical models, optimization and the OR process, descriptive vs. simulation,
exact vs. heuristic techniques, deterministic vs. stochastic models.

2. Linear Programming, Introduction, Graphical Solution and Formulation of L.P. Models,
Simplex Method (Theory and Computational aspects), Revised Simplex, Duality Theory
and applications Dual Simplex method, Sensitivity analysis in L.P., Parametric
Programming, Transportation, assignment and least cost transportation, interior point
methods: scaling techniques, log barrier methods, dual and primal dual extensions

3. Introduction to game theory
4. Multi objective optimization and goal programming
5. Shortest paths, CPM project scheduling, longest path, dynamic programming models
6. Discrete optimization models: integer programming, assignment and matching

problems, facility location and network design models, scheduling and sequencing
models

7. Nonlinear programming: unconstrained and constrained, gradient search, Newton's
method,

8. Nelder-Mead technique, KuhnTucker optimality conditions. These topics should only be
covered only time permits.

9. Discrete Time processes: Introduction, Formal definitions, Steady state probabilities,
first passage and first return probabilities, Classification terminology, Transient
processes, queuing theory introduction, terminology and results for the most tractable
models like M/M/1

10. Inventory Models (Deterministic): Introduction, The classical EOQ, sensitivity analysis,
Nonzero lead time, EOQ with shortages, Production of lot size model, EOQ with
quantity discounts, EOQ with discounts, Inventory models (Probabilistic): The newshoy
problem : a single period model, a lot size reorder point model

• References :
Operations Research: An Introduction, 7th Edn., H. Taha, Prentice’Hall, 2002
Operations Research: Principles and Practice, A. Ravindran, D, Phillips, J Solberg, John Wiley
Pub, 1987
Linear Programming and Extensions, G Dantzig, Princeton University Press, 1963
Theory of Games and Economic Behavior, J. von Neumann, O. Morgenstern, John Wiley Pub.
1967
Goal Programming: Methodology and Applications, M. Schniederjans, Kluwer Academic Pub,
1995

 24

CS-404 Software Engineering – I

Contents:

1. Introduction, Need, Software life cycles
2. Overview of Requirements Engineering, Processes, the requirements document
3. System Specification

Logic Sets and Types, Z specification structure
Relations, Functions, Sequences

4. Structured System Analysis Design
ER Diagrams, Data Flow Diagrams

5. Object Oriented Software Design using UML
6. Notations for Design

A brief reintroduction to Object Oriented Concepts and an overview of the UML notation
Characteristics of notations for design.

7. Requirements Analysis
User Requirements Gathering, Performing a Domain Analysis, Developing the Use
Cases.

8. System Specification
Design and Analysis using UML
Class Diagrams
UML Activity Diagrams, Task Analysis
UML Interaction Diagrams
UML Object Diagrams
UML Deployment Diagrams, Collaboration diagrams, Data Flow Diagrams

9. SSAD Vs Object Oriented Design
10. CASE Tools
11. Forward Engineering and Reverse Engineering
12. Code Construction

UML to Code, Code to UML
Z to Code

• References :

Software Engineering A Beginner's Approach, Roger S. Pressman, McGraw Hill
The Engineering of Software, Dick Hamlet, Joe Maybee, Addison Wesley, 2001
UML Distilled, 2nd Ed., Martin Fowler, Addison Wesley
Introduction to the Personal Software Process, Watts S. Humphery, Addison Wesley, 1997
Using UML for Software Engineering, Pooley and Stevens, Addison Wesley, 1999
The Unified Modeling Language Users Guide, 1st Ed., Grady Booch, James Rumbaugh and
Ivar Jacobdon, Addison Wesley, 1999
Software Engineering Peters, Wiley India
Specification Case Study, Hayes, Prentice Hall
Currie: The Essence of Z ISBN 013749839X, Prentice Hall
UML Toolkit, Eriksson, John Wiley, 1998

 25

CS-601 Programming Paradigms

• Contents
1. GUI Programming
2. GUI Vs CUI
3. Event Driven Programming
4. Visual (Meta-GUI) Programming
5. Architecture of typical Application
6. VB Environment : Steps in creating and using controls
7. Database Connectivity, codeless programming
8. OO Paradigm
9. Modularity
10. Data Abstraction
11. Classes and Objects
12. Inheritance and interfaces
13. Polymorphism
14. Inner Classes
15. Use of AWT and Swing for GUIs
16. Applets (if time permits)
17. UML: Class Diagrams, Sequence Diagrams
18. UML to Java tools (ArgoUML)
19. HDL via Verilog or VHDL
20. Architectural behavioral and RT levels
21. Study of Waveforms
22. Differences between features used for testing and allowable in design
23. Notion of Scripting
24. Scripting via Perl/Guile/Python

• References :
Verilog HDL by S. Palnitker (Prentice Hall)
Perl by Wall and Chistiansen (O'reilly)
Core Java 2 Vol I fundamentals and Vol II Advanced features by Cay S. Horstmann and Gery
Cornell (Prentice Hall)
Thinking in Java Vol 3 by Bruce Eckel at http://www.mindview.net/books/TIJ
Scripting reference at http://home.pacbell.net/ouster/scripting.html
Guile for scripting at http://gnuwww.epfl.ch/software/guile/guile.html
The art of programming with Visual Basic by Mark Warhol (John Wiley & Sons)
Visual Basic 6.0 programmer's guide (Microsoft Press)
Visual Basic 6.0 database programming bible by Wayne Freeze (Hungry Minds)
Dive into Python by Mark Pilgrim at http://diveintopython.org
Programming Python by Mark Lutz, 2nd Edition (O'Reilly)
Python Documentation at http://www.python.org/doc/

 26

CS-602 Software Engineering - II

• Prerequisites : (Student should have undergone the prerequisite course)
CS-404 (Software Engineering – I)

• Contents :
1. Concepts of software management, The software crisis, principles of software

engineering, programming in the small Vs programming in the large
2. Software methodologies/processes, The software life cycle, the waterfall model and

variations, introduction to evolutionary and prototyping approaches
3. Software measurement
4. Object-oriented requirements analysis and modeling: Requirements analysis,

requirements
5. Solicitation, analysis tools, requirements definition, requirements specification, static

and dynamic specifications, requirements review. (just revisited)
6. Software architecture
7. Software design, Design for reuse, design for change, design notations, design

evaluation and validation
8. Implementation, Programming standards and procedures, modularity, data abstraction,

static analysis, unit testing, integration testing, regression testing, tools for testing, fault
tolerance

9. User considerations, Human factors, usability, internationalization, user interface,
documentation, user manuals

10. Documentation, Documentation formats, tools
11. Project management, Relationship to life cycle, project planning, project control, project

organization, risk management, cost models, configuration management, version
control, quality assurance, metrics

12. Safety
13. Maintenance, The maintenance problem, the nature of maintenance, planning for

maintenance
14. Configuration Management
15. Tools and environments for software engineering, role of programming paradigms,

process maturity
16. Introduction to Capability Maturity Model

� People Capability Maturity Model
� Software Acquisition Capability Maturity Model
� Systems Engineering Capability Maturity Model

17. IEEE software engineering standards

• References :
Software Engineering, 6th Edn., Ian Sommerville, Addison Wesley, 2001
(Note : This is also the preferred textbook for the IEEE Software Engineering Certificate
Program.)
The Engineering of Software, Dick Hamlet, Joe Maybee, Addison Wesley, 2001
Introduction to the Team Software Process, Watts S. Humphrey, Addison Wesley, 2000
Software Engineering A Practitioner's Approach European Adaption, 5th Edn., Roger S.
Pressman, adapted by Darrel Ince, McGraw Hill, 2000
Software Engineering Theory and Practice, Shari Lawrence Pfleeger, Prentice Hall, 1998
Practical Software measurement, Bob Huges, McGraw Hill, 2000
Human Computer Interaction, 2nd Edn., Dix, Finlay, Abowd and Beale, Prentice Hall, 1997
Software Project Management, 2nd Edn., Bob Huges & Mike Cotterell, McGraw Hill, 1999

 27

 CS-603 Applications of Software Engineering and Programming Paradigms

• Contents:

• Comparison between formal and informal ways of modeling software

• Modeling a given software system using Z-specification

• Modeling a given software system using UML

• Study of other ways of specification and modeling

• Study of Software Quality
o CMM practices and CMM levels
o Six Sigma practices

• Study of Software Processes (e.g. Rational Unified Process)

• Implementation of example software systems using different programming
paradigms

• Views of a software system from different paradigms

• Comparative study of application of different programming paradigms to software
development

• Implementation of a typical software in order to appreciate advantages,
disadvantages and limitations of different programming paradigms

• Appropriateness of particular paradigm for a given kind of software

• Using Python as multi-paradigm programming language

• Implementation of higher order functions in non-functional languages

• Implementation issues of event driven software systems (e.g. X Window System,
VB software)

• References:

Using UML for Software Engineering, Pooley and Stevens, Addison Wesley, 1999 Rational
Unified Process, www.rational.com
Practical Software measurement, Bob Huges, McGraw Hill, 2000
Thinking in Java Vol 3 by Bruce Eckel at http://www.mindview.net/books/TIJ
Thinking in C++ by Bruce Eckel
Visual Basic 6.0 programmer's guide (Microsoft Press)
X Window System Documentation, www.xfree86.org
Python Documentation at http://www.python.org/doc/
Boost Lambda Library for C++, www.boost.org

 28

CS-411 Software Engineering (M.Sc./M.Tech. only)

Contents:

1. Introduction, Need, Software life cycles
2. Overview of Requirements Engineering, Processes, the requirements document
3. System Specification

Logic Sets and Types, Z specification structure
Relations, Functions, Sequences

4. Structured System Analysis Design
ER Diagrams, Data Flow Diagrams

5. Object Oriented Software Design using UML
6. Forward Engineering and Reverse Engineering
7. Code Construction

UML to Code, Code to UML
Z to Code

8. Concepts of software management, The software crisis, principles of software
engineering, programming in the small Vs programming in the large

9. Software methodologies/processes, The software life cycle, the waterfall model and
variations, introduction to evolutionary and prototyping approaches

10. Software measurement
11. Software architecture
12. Software design, Design for reuse, design for change, design notations, design

evaluation and validation
13. Implementation, Programming standards and procedures, modularity, data abstraction,

static analysis, unit testing, integration testing, regression testing, tools for testing, fault
tolerance

14. User considerations, Human factors, usability, internationalization, user interface,
documentation, user manuals

15. Documentation, Documentation formats, tools
16. Project management, Relationship to life cycle, project planning, project control, project

organization, risk management, cost models, configuration management, version
control, quality assurance, metrics

17. Maintenance, The maintenance problem, the nature of maintenance, planning for
maintenance

• References :
Software Engineering A Beginner's Approach, Roger S. Pressman, McGraw Hill
Software Engineering, 6th Edn., Ian Sommerville, Addison Wesley, 2001
The Engineering of Software, Dick Hamlet, Joe Maybee, Addison Wesley, 2001
UML Distilled, 2nd Ed., Martin Fowler, Addison Wesley
Introduction to the Personal Software Process, Watts S. Humphery, Addison Wesley, 1997
Using UML for Software Engineering, Pooley and Stevens, Addison Wesley, 1999
The Unified Modeling Language Users Guide, 1st Ed., Grady Booch, James Rumbaugh and
Ivar
Introduction to the Team Software Process, Watts S. Humphrey, Addison Wesley, 2000
Software Engineering A Practitioner's Approach European Adaption, 5th Edn., Roger S.
Pressman, adapted by Darrel Ince, McGraw Hill, 2000
Software Engineering Theory and Practice, Shari Lawrence Pfleeger, Prentice Hall, 1998
Practical Software measurement, Bob Huges, McGraw Hill, 2000
Human Computer Interaction, 2nd Edn., Dix, Finlay, Abowd and Beale, Prentice Hall, 1997
Software Project Management, 2nd Edn., Bob Huges & Mike Cotterell, McGraw Hill, 1999

