UNIVERSITY OF PUNE

Revised Syllabus from 2008

S.Y.B.Sc. (Environmental Science)

ENV-201: Ecology and Ecosystem (Semester-I)

Unit	Contents	Lectures
1	Introduction, Interdisciplinary nature, History and scope of Ecology.	
	Ecological Principals & Concepts: - Levels of ecology (Gene to	
	organism - Individual to Biome, Biosphere and Landscape).	6
	Aautecology, Synecology, population, community, biome, and	
	limiting factors: biotic and abiotic	
2	Environmental heterogeneity and dynamism.	
	Evolution of environment; Early atmosphere; Reducing and	4
	oxidizing atmosphere	
	Population Ecology: - Basic concepts of population ecology, size and	
	distribution of population. (Random, Aggregate and uniform	
	populations with examples).	
3	Population dynamics characteristic features: Natality Mortality,	10
	fecundity, density, fluctuation, age distribution, biotic potential,	
	prey-predator relationship, Environmental resistance in relation to	
	absolute maximum and realized minimum carrying capacity	
4	Characteristics of community, composition and structure, origin and	
	development, ecotone, edge effect, ecological niche, interspecific	4
	and intra specific competition, examples.	
	Ecological Succession: Mechanism of succession; trends of	
5	succession, types, climax and sub-climax concept, edaphic and	5
	climatic succession, models of succession, hydrosere and xerosere	
	Concept of food chain food web, ten percent law, net community'	
6	production, Energy flow, The ecosystem concept, abiotic and biotic	3
	components.	
	Energy input in ecosystem, standing crop, biomass, primary and	
	secondary production, gross and net production, methods of	
7	measuring productivity, pattern of primary production and biomass	9
	in the major ecosystem of the world, Feedback and control.	
	in the major ecosystem of the world, I ecuback and control.	
8	Concept of Biogeochemical cycles, gaseous and sedimentary	
	Hydrological cycle, Oxygen, carbon, nitrogen, sulphur, and	7
	phosphorus cycle, nutrient budget, human impact on nutrient cycles.	

ENV-201: Biological Diversity (Semester-II)

Unit	Contents	Lectures
1	Biodiversity concept, Definition and Scope.	
	Organisms evolution and distribution in space and time	6
	Types of biodiversity – ecosystem, species and genetic, Biodiversity at	
	local, national and international level,	
2	History and origin of species diversity, Species variation, convergence	
	and divergence in species, number of species of microbes, plants and	5
	animals,	
3	Centres of diversity, concept of endemism, types and endemic species	3
	with examples	3
4	Origin and evolution of species diversity, Agro-ecosystem – factors	3
	responsible for variation	3
5	Ecosystem diversity- classification of ecosystem, major ecosystems of	5
3	India and their characteristics, floral and faunal elements	3
	Genetic diversity – Brief introduction to genetic variation in species,	
6	concept of genetic drift, gene pool.	6
	Measurement of genetic diversity using DNA, chromosomes, molecular	0
	markers	
	Concept of hotspots and the basis of hotspot identification, detailed	
7	account of Western Ghats as a hotspot, India as mega-biodiversity	5
	nation, Mayrs system and latest estimates	
	Value of biodiversity – Introduction, direct and indirect value as food,	
8	fodder, timber, forage, medicinal and ornamental, Other benefits of	4
	biodiversity	
	Loss of biodiversity- Factors responsible for degradation of ecosystem,	
9	fragmentation, pollution and overexploitation, change in habitat, effects	6
9	of climate change, genetically modified organisms and their effects on	
	ecosystem, human-wildlife conflict	
10	Conservation of biodiversity –need and awareness, <i>In-Situ</i> and <i>Ex-Situ</i>	
	conservation with examples, traditional methods of conservation,	5
	International and national efforts for biodiversity conservation.	

ENV-202: Hydrology (Semester-I)

Unit	Contents	Lectures
1	Introduction to Hydrology:	
	Definition and Scope, Sources, Occurrence and distribution of surface	
	and groundwater.	4
	Origin of water – meteoric, juvenile, magmatic and sea waters, chemical	
	composition of groundwater, river water, sea water	
2	Hydrological process:	
	Surface run off, interception, infiltration, evaporation, evapo-	4
	transpiration, groundwater flow, primary and secondary aquifers	
	Groundwater Chemistry:	
	Groundwater quality, physical, chemical and biological properties of	
3	water, quality criteria for different uses.	12
3	Groundwater quality in different provinces of India, problems of Arsenic,	12
	nitrate and Fluoride with case studies, saline water intrusion in aquifer	
	and its prevention.	
	Groundwater problems and Management:	
	Groundwater problems related to foundation work, mining, canals and	
	tunnels, agriculture. Problems of over exploitation, remediation,	
4	groundwater balance and methods of estimation, legislation,	13
	sustainability criteria and managing renewable and non-renewable	
	groundwater resources and groundwater development in urban area and	
	artificial recharge methods	
	Water Harvesting:	
	Introduction to watershed, Definition, characters of materials for	
5	catchment apron.	10
3	Rainwater harvesting: Techniques for preparation of water harvesting	10
	catchments, storage of harvested water, traditional methods of water	
	harvesting, some issues related to rain water harvesting	
	Water Pollution:	
6	Surface and groundwater	5
	Types, sources, consequences, groundwater contamination, effects on	3
	man and environment	

ENV-202: Soil Science (Semester-II)

Unit	Contents	Lectures
1	Definition of soil, classification, types, soil formation.	
	Physical, chemical and biological weathering.	8
	Main components of soil	0
	Soil profile – Introduction, horizons – A, B, C and D	
2	Soil morphology – texture, structure, and other physical, chemical,	5
	and biological properties	3
3	Role of soil nutrients (major, minor and trace) in plant growth,	4
	various forms of nutrients in soil, soil moisture	
4	Soil microbes and other organisms, types and their role in soil	4
	fertility, nitrate and phosphate solubilising microbes	
	Soil organic matter, its decomposition and effects on soil fertility.	
_	Soil chemistry – reactions in soil, Acidic and alkaline soils, organic	10
5	manures and green manures, biofertilizers.	10
	Effects of fertilizers on soil properties	
6	Soil erosion, types of agents, factors affecting erosion	3
7	Soil pollution, types, sources, and effects of soil pollution,	5
	bioremediation of soils with examples	
8	Soil conservation: Methods, engineering practices and land	
	treatment, land drainage.	6
	Need and practices for agricultural lands: physical, mechanical and	0
	biological practices.	
9	Soils of India in general and soils of Maharashtra	3

PRACTICAL BASED ON 201 AND 202

Soil Science

- 1. Visit to Soil Survey Department of the State Government or Agriculture University.
- 2. Determination of water holding capacity of soil.
- 3. Determination of available nitrogen in the soil sample.
- 4. Determination of total calcium carbonate in soil by rapid methodl.
- 5. Determination of Fe (II) in soil.
- 6. Determination of Soluble Salts in Soils.
- 7. Determination of Soil Sediments.
- 8. Determination of Total Organic Carbon in Soil.
- 9. Determination of Gypsum requirement of alkaline soils
- 10. Determination of available potassium by Flame Photometer.

Hydrology

- 1. Sampling of water and preservation
- 2. Analysis of specific conductance
- 3. Analysis of nitrate
- 4. Analysis of fluoride
- 5. Analysis of sulphide
- 6. Turbidity test
- 7. Analysis of Free Chlorine
- 8. Determination of oil and grease
- 9. Determination of silica
- 10. Determination of Phenols
- 11. Bacterial analysis of Water

Ecology and Ecosystem and Biological Diversity

- 1. Study of vegetation by quadrate method list count quadrate
- 2. Determination of minimum area and sixe by employing species area curve method
- 3. Study of vegetation by line transect method
- 4. Study of vegetation by Belt transect methods
- 5. Study visits to protected area / sacred grove / nature reserve to understand the biological diversity and interrelationship of biotoc-abiotic factors
- 6. Identification of insects, birds, animals and plants in sanctuaries
- 7. Visit to the Interpretation Centre or Nature Information Centre

Out of the above mentioned list any 24 practical are to be covered in both the semesters.

BOOKS:

- 1. A Manual of Air Quality Monitoring: NEERI Publication.
- 2. A Textbook of Soil Science J.A. Daji Media Promoters and Publ. Pvt. Ltd. Mumbai
- 3. Air Pollution: MN Rao, Mcgraw Hill 1993.
- 4. Air Pollution: V.P. Kudesia Pragati Prakashan Meerut.
- 5. Biodiversity and Environment:- S.K. Agarwal, S. Tiwari and P.s. Dubey, 1996.
- 6. Biodiversity Conservation: Global agreements and nation at concems. RAMSAR sites CBD, Ouarantine, Regulation, National terety pdicy Biodiversity Act wild life Act.
- 7. Biodiversity Measurement and Estimation: D.L. Hawks worth Director international Mycological Institute Surrey, UK, Published: Chapman & Hall, Condou New York, Tokyo, Madras.
- 8. Climateology: Fundamentals and Applications: Mater J.R.
- 9. Climatology; Selected Applications: Henry D. Foth
- 10. Concept of Ecology: E.J. Koromondy, 1996, Concept of modern Biology Series, Prentice Hall.
- 11. Ecology 2000:- Sir Edmand Hillary.
- 12. Ecology and Environment: P.D. Sharma, 1994.
- 13. Ecology and Environment: P.W. Sharma Rastogi Publications, Meerut.
- 14. Env. Priorities in India and Sustainable Development: T.N. Khoshoo.
- 15. Environment, Energy, Health, Planning for conservation:- V.Vidyanath, Gyan Publishing house, New Delhi.
- 16. Environmental Chemistry A.K. De
- 17. Environmental Chemistry B.K. Sharma
- 18. Environmental Chemistry H. Kaur
- 19. Environmental Chemistry Thomas G. Spiro
- Environmental Science: A study of interaction ship E.D. Enger, B., E. Smoith, 5th ed; WCB Publication.
- 21. Environmental Science: Daniel Botkin and Edward Kelter, John Wiley and Sons, NewYork.
- 22. Environmental Science: Eldon d. Enger and Bradley F. Smith, WCB Publishers; Boston.
- 23. Environmental Science: Enger, Smith, Smith W.M.C, Brown. Company Publication
- 24. Forests Types of India: (1968) Champion and Seth.
- 25. Fundamentals of Air Pollution: 2nd Ed. Arthur Co Stern Acad. Press 1984.
- 26. Fundamentals of Ecology: Dash M.C. Tata McGraw Hill. Pub. Co- Ltd. New Delhi.
- 27. Fundamentals of Ecology: E.P. Odum, Revised Edition 1995-96 Edition 2003.
- 28. General Climatology: Critichfield H.J.
- General Meterology: Horace Robert Byers, Sc. D. 3rd Ed. Mcgraw Hill Book Company New York, Toronta, London.
- 30. Handbook of Industrial pollution and Control S.C. Bhatia
- 31. Introduction to Climatologh for topics: Ayoade J.O.
- 32. Introduction to Weather and Climate: Trewartha
- 33. Manual for field scology: R. Mishra.
- 34. Meteorology of Air Pollution: R.S. Scores 1990 Ellis Hardood Pub.
- 35. Modern Concepts in Ecology: H.D. Kumar
- 36. Perspectives in Environmental Studies Kaushik and Kaushik
- 37. Principals of Environmental Biology: P.K.G. Nair, Himalaya Pub. House, Delhi.
- 38. Productivity in Fresh Water Ecosystem: Vollenveider.
- 39. Resources & Human Well-Being:- Archana Sharma.
- 40. Soil Pollution Dinesh Mani
- 41. The Atmosphere: An Introduction to Meterology:- Frederic K. Lutgen E.J. tarbuck.
- 42. The Biological diversity Act 2002 and Biological diversity rules 2004:- National Biodiversity Authority INDIA. 475, 9th South cross street, Kalpalocwar Nagar, Neelangarai Chennai 600041.
- 43. Vegetation of the Earth: Heinvich Walter, the English University Press Ltd. London. Springer-Verlag, New York.
- 44. Water & Plant Productivity: Toder G. Kurdess.
- 45. Water and Plant Productivity: Todar G. Kudrev.