University of Pune Botany Syllabus

Class – S.Y. B .Sc. (To be implemented From June 2009)			
Paper	Semester - I	Semester - II	
Ι	Fundamentals of Plant	Structural Botany(Anatomy,	
	Systematics and Plant Ecology	Embryology and Palynology)	
II	Fundamentals of Plant	Fundamentals of Plant Biotechnology	
	Physiology		
III	Practicals based on Theory courses	(Paper I and II)	

S. Y. B. Sc. [Botany] (Semester I, Paper I)

Fundamentals of Plant Systematics and Plant Ecology (48 Lectures)

1. Introduction to Plant Systematics

- 1.1 Definition, need, objectives and importance, scope of taxonomy and systematics.
- 1.2 Systematics- Principles, Concepts, Different aspects of taxonomy- Identification, Nomenclature, Classification, Kinds of systems- Artificial, Natural and Phylogenetic
- 1.3 Taxonomic Literature- Flora, Monographs, Revisions, Reference books.

2. Aspects of Taxonomy

- 2.1 Phases of Taxonomy pioneer, consolidation, experimental, encyclopedic.
- 2.2 Broad outline classification of Bentham & Hooker's system of classification of seed plants up to series,
- 2.3 Merits and limitations of Bentham & Hooker's system.

3. Sources of data for Systematics

Enlisting gross features of Morphology, Anatomy, Cytology, Embryology, Phytochemistry, Micromorphology and Molecular biology, (one example from each major group of plants.)

4. Botanical Nomenclature

- 4.1 ICBN, History, principles and some important rules of nomenclature,
- 4.2 Binomial nomenclature, coining of generic names and specific epithets.
- 4.3 Ranks & endings of taxa names.
- 4.4 Principles of priority, effective and valid publication,
- 4.5 Single and double authority citation, Nomina conservanda.

5. Study of Plant Families

Study of following families with reference to systematic position, salient features, floral formula, floral diagram and any five examples with their economic importance -Annonaceae, Meliaceae, Myrtaceae, Rubiaceae, Solanaceae, Asclepiadaceae, Euphorbiaceae and Liliaceae

Plant Ecology

- 1 Introduction to plant ecology. (3L) 1.1 Introduction, concept, definition, Autecology and Synecology, 1.2 Plant ecology in relation to environmental biology and disaster management. 1.3 Importance of ecology, 2 **Ecosystem Ecology:** (11 L)Introduction, ecological organization - species population, community 2.1 ecosystem and biosphere.
 - 2.2 Kinds of ecosystem, structure and function of ecosystem, abiotic components, biotic components and their role, ecosystem dynamics.

(**3L**)

(4L)

(5L)

(4L)

(8L)

- 2.3 Ecosystem energetics energy flow, processes within ecosystem, nutrient cycling, food chain, food web, ecological pyramids pyramids of number, biomass, energy and homeostasis.
- 2.4 Bio-geo-chemical cycles-concept, enlisting, details of water and carbon cycle.
- 2.5 Composition and functioning of ecosystem: i) Simple pond ecosystem,
 ii) Complex forest ecosystem iii) Artificial cropland ecosystem.

3 Ecological grouping of plants:

(5 L)

(5 L)

Ecological grouping of plants with reference to their significance of adaptive external and internal features: Hydrophytes, Mesophytes, Xerophytes

4 Community dynamics (Ecological Succession):

- 4.1 Introduction, causes physiographic, climatic and biotic.
- 4.2 Succession a) Principles b) Types primary and secondary c) Succession on land, rock and in water
- 4.3 Stages Nudation, Migaration. Competition, Ecesis and Climax.

S. Y. B. Sc. [Botany] (Semester I, Paper II) Fundamentals of plant physiology Total Lectures: 48

1. Introduction to plant physiology

- **1.1** Why to study plant physiology?
- **1.2** Brief History of plant physiology,
- **1.3** Plants as organic laboratories,
- **1.4** Applications of plant physiology.

2. Biophysical phenomenon in plant cell

- **2.1** Energy transduction in cell Bioenergetics, Laws of thermodynamics, ATP as biological energy transfer molecule.
- **2.2** Solutions, suspensions and colloids True solutions, percentage, molarity, molar, buffer, molal solutions, normal solutions, pH, acids, bases, salts, colloids, emulsions, hydrophilic and hydrophobic systems, gels, colloidal system properties, Plant cell as colloidal system.
- **2.3** Permeability Theories of cell permeability.
- **2.4** Diffusion Definition, mechanism, laws of diffusion, factors affecting diffusion, diffusion pressure deficit (DPD), significance of diffusion in plants.
- **2.5** Osmosis Introduction, definition, types of membranes, mechanism, osmotic pressure (OP), types of osmosis endosmosis, exosmosis, turgor pressure (TP) and wall pressure (WP), relation between OP, DPD (Suction pressure) and TP, significance of osmosis.
- **2.6** Plasmolysis Definition, mechanism, deplasmolysis, significance of Plasmolysis.
- **2.7** Imbibition Introduction, definition, mechanism, imbibition pressure, significance.

3. Absorption of water -

- **3.1** Water, "the elixir of life" Role of water in plant life.
- 3.2 Structure of water molecule, physico-chemical properties of water.
- **3.3** Sources of water soil water, gravitational, hygroscopic and capillary.
- **3.4** Types of soil sand, clay and loam; Water holding capacity of soil.
- **3.5** Root hair as water absorbing part of the plant.
- **3.6** Mechanism of water absorption i) Active absorption. ii) Passive absorption.
- 3.7 Factors affecting rate of water absorption.

4. Ascent of sap -

Introduction,

Mechanism of ascent of sap -i) Root pressure theory, ii) Physical force theories: Capillarity, Imbibition, Atmospheric pressure and Cohesion-tension

Factors affecting ascent of sap.

5. Transpiration -

Introduction, Definition,

Transpiration, guttation, exudation and evaporation,

Significance of transpiration,

Types of transpiration – Cuticular, Lenticular and Stomatal;

Pathway of stomatal transpiration;

Stomata – Structure, number, distribution and mechanism of opening and closing of stomata.

(2 L)

(9 L)

(5 L)

(5 L)

(4 L)

K ⁺ - Pump theory explaining stomatal opening and closing.	
Factors affecting transpiration.	
Atitranspirants.	
6. Mineral nutrition -	(6 L)
Introduction.	
Essential elements, criteria of essentiality and methods of assessm	ent of essentiality –
sand culture, solution culture (hydroponics) and aeroponics.	-
Enlisting of major and minor elements.	
Role and deficiency symptoms of N, P and K, Role of micronutrien	ts in agriculture and
horticulture.	
Role of mycorrhiza in agriculture.	
Liquid fertilizers, foliar nutrition and ion antagonism.	
Plants as mineral indicators.	
7. Mineral salt absorption -	(4 L)
Introduction, soil solution, soil pH and availability of nutrients.	
Regions of root involved in absorption.	
Mechanism of salt absorption - i) Passive absorption : Ion ex	change. Donnan's
equilibrium, ii) active absorption : Lundegarth's theory.	
Factors affecting salt absorption.	
8. Plant growth -	(3 L)
Introduction, Definition, Growth and development.	
Kinetics (phases) of growth, Regions of growth and Measurement of	growth.
Factors affecting growth – External and Internal.	
9. Plant growth regulators -	(4 L)
Introduction and definition	
Discovery, site of synthesis and practical applications of $-i$) Auxins,	, ii) Gibberellins, iii)
Cytokinins, iv) Ethylene, v) Abscisic acid.	
10. Physiology of flowering -	(6 L)
Introduction.	
Regulation of sexuality.	
Phytohormones and flower initiation.	
Photoperiodism – Concept, definition, Short Day Plants, Long Da	ay Plants and Day
Neutral Plants, Photoperiodic induction, phytochromes and flowering.	
Endogenous rhythms.	
Flowering hormone.	
Photoperiodism and C/N ratio.	induction tachnique
Vernalization – Concept, mechanism and site of vernalization, cold	mauction technique

and applications of vernalization.

S. Y. B. Sc. [Botany]

(Semester II, Paper I)

Structural Botany (Anatomy, Embryology and Palynology)

Anatomy:

Total Lectures: 48

_	-	-	•	-	-	•••	
				(.	2()L))

	Introduction. Plant Tissues:	1 L 4 L
	2.1 Ground tissues: parenchyma, chlorenchyma, collenchyma, and sclerenchy	
	2.2 Vascular tissues: xylem, phloem.	
	2.3 Secretory tissues: laticiferous, glandular.	
3.	Epidermal tissue system:	3 L
	3.1 Structure and function: uniseriate epidermis, multiple epidermis,	
	3.2 Stomata – structure and function.	
	3.3 Epidermal outgrowths- nonglandular, glandular.	
4.	Mechanical tissue system:	4 L
	4.1 Principles involved in distribution of mechanical tissues – Inflexibility,	
	Incompressibility, Inextensibility and Shearing stress.	
	4.2 Tissues providing mechanical support, their distribution in leaf, stem and	root
_	of dicots and monocots.	4.7
5.	Normal secondary growth.	4 L
	5.1 Introduction and need.	
	5.2 Process in annual and perennial stem.5.3 Structure and function of periderm, bark, tyloses, growth rings and lentice	1.
6	5.3 Structure and function of periderm, bark, tyloses, growth rings and lentice Anomalous secondary growth.	4 L
0.	6.1 Definition, causes.	4 L
	6.2 Growth in <i>Bignonia</i> (dicot stem) and <i>Raphanus</i> (dicot root).	
	6.3 Growth in <i>Dracaena</i> (monocot stem).	
Fmbr	yology (20L)	
LINDI	yology (20L)	
	Definition and scope.	1 L
	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou	us
2.	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue.	us 3 L
	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou	us 3 L I.
2. 3.	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad	us 3 L I. 2 L
2. 3. 4.	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte.	us 3 L I.
2. 3. 4.	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous,	us 3 L 1. 2 L 2 L
2. 3. 4. 5.	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous.	us 3 L 1. 2 L 2 L 2 L
2. 3. 4. 5.	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore	us 3 L 1. 2 L 2 L 2 L 2 L
 2. 3. 4. 5. 6. 	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrade Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. 	us 3 L 1. 2 L 2 L 2 L
 2. 3. 4. 5. 6. 	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and 	us 3 L 1. 2 L 2 L 2 L 2 L
 2. 3. 4. 5. 6. 	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrade Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. 	us 3 L 1. 2 L 2 L 2 L 2 L
 2. 3. 4. 5. 6. 7. 	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and 	us 3 L 1. 2 L 2 L 2 L 2 L 2 L 3 L
 2. 3. 4. 5. 6. 7. 	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and development of embryo sacs – monosporic, bisporic and tetrasporic.	us 3 L 1. 2 L 2 L 2 L 2 L 2 L 3 L
 2. 3. 4. 5. 6. 7. 8. 9. 	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and development of embryo sacs – monosporic, bisporic and tetrasporic. Fertilization: entry of pollen tube, discharge of pollen tube content, fusion of gam syngamy, triple fusion, significance of double fertilization. Endosperm types: nuclear, helobial, cellular. 	us 3 L 1. 2 L 2 L 2 L 2 L 3 L setes, 2 L 1 L
 2. 3. 4. 5. 6. 7. 8. 9. 	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and development of embryo sacs – monosporic, bisporic and tetrasporic. Fertilization: entry of pollen tube, discharge of pollen tube content, fusion of gam syngamy, triple fusion, significance of double fertilization. 	us 3 L 1. 2 L 2 L 2 L 2 L 3 L setes, 2 L
 2. 3. 4. 5. 6. 7. 8. 9. 	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrade Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and development of embryo sacs – monosporic, bisporic and tetrasporic. Fertilization: entry of pollen tube, discharge of pollen tube content, fusion of gam syngamy, triple fusion, significance of double fertilization. Endosperm types: nuclear, helobial, cellular. Embryo - structure of dicot and monocot embryo (development not expected) 	us 3 L 1. 2 L 2 L 2 L 2 L 3 L setes, 2 L 1 L
2. 3. 4. 5. 6. 7. 8. 9. 10 Palyne	 Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrade Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and development of embryo sacs – monosporic, bisporic and tetrasporic. Fertilization: entry of pollen tube, discharge of pollen tube content, fusion of gam syngamy, triple fusion, significance of double fertilization. Endosperm types: nuclear, helobial, cellular. Embryo - structure of dicot and monocot embryo (development not expected) 	us 3 L 1. 2 L 2 L 2 L 2 L 3 L setes, 2 L 1 L
2. 3. 4. 5. 6. 7. 8. 9. 10 Palyno 1.	Microsporangium: structure of tetrasporangiate anther, tapetum types, sporogenou tissue. Microsporogenesis: process, cytokinesis and its types. Types of microspore tetrad Male gametophyte: structure of pollen grain, development of male gametophyte. Megasporangium: structure and types of ovules – anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis: tenuinucellate and crassinucellate ovules, types of megaspore tetrads. Female gametophyte: structure of typical 8-nucleate embryo sac, types and development of embryo sacs – monosporic, bisporic and tetrasporic. Fertilization: entry of pollen tube, discharge of pollen tube content, fusion of gam syngamy, triple fusion, significance of double fertilization. Endosperm types: nuclear, helobial, cellular. Embryo - structure of dicot and monocot embryo (development not expected)	us 3 L 1. 2 L 2 L 2 L 2 L 3 L 1 L 1 L 3 L

3. NPC system. Principles and general outline

1 L

S. Y. B. Sc. [Botany] (Semester II, Paper II) Fundamentals of Plant Biotechnology (48 Lectures)

1. An Introduction to plant Biotechnology.

- 1.1 What is biotechnology?
- 1.2 Biotechnology an interdisciplinary subject.
- 1.3 Biotechnology and the developing world. (Role)
- 1.4 Substrates for biotechnology
 - i) A biomass strategy.
 - ii) Natural raw materials.
 - iii) Availability of byproducts.
 - iv) Chemical and petrochemical feed stocks.
 - v) Raw materials for future of biotechnology.

2. Plant Genome

- 2.1 Nuclear Genome Genetic materials, DNA replication, mechanism of DNA amplification, plant gene structure.
- 2.2 Chloroplast genome Structure and organization.
- 2.3 Mitochondrial genome size, structure and mitochondrial plasmids.
- 2.4 Cytoplasmic male sterility.

3. Genetic Engineering -

- 3.1 Introduction, genetic engineering safety, social, moral and ethical aspects.
- 3.2 Release of genetically manipulated organisms to the environment.
- 3.3 Genetic modification and food uses.

4. Bioprocess Technology.

- 4.1 Introduction.
- 4.2 Principles of microbial growth.
- 4.3 Bioreactor.
- 4.4 Scale up.
- 4.5 Media design for fermentation process.
- 4.6 Solid substrate fermentation.
- 4.7 Downstream processing.

5. Enzyme Technology -

- 5.1 The nature of enzyme.
- 5.2 The applications of enzymes.
- 5.3 Technology of enzyme production.
- 5.4 Immobilized enzymes.

6. Biomass Technology for energy

- 6.1 Photosynthesis the ultimate energy source.
- 6.2 Sources of Biomass.

(6L)

(6L)

(6L)

(4L)

(4L)

(4L)

- 6.3 Ethanol from biomass.
- 6.4 Methane from biomass
- 6.5 Biodisel from plants.

7. Biomass Technology for food (Single cell protein) (4L)

- 7.1 The need for proteins.
- 7.2 Acceptability and toxicology of SCP.
- 7.3 SCP from wastes.
- 7.4 SCP from agricultural crops and residues
- 7.5 SCP from algae.
- 7.6 The economic implications of SCP.

8. Tissue culture Technology -

- 8.1 Introduction, totipotency.
- 8.2 Media composition and preparation.
- 8.3 Culture technique
 - i) Sterilization and aseptic culture technique.
 - ii) Organogenesis and Embryogenesis.
 - iii) Single cell culture.
 - iv) Haploid production.
 - v) Somatic hybridization and cybridization, artificial / synthetic seeds.

(10L)

(4L)

- vi) Applications of PTC.
- vii) Design and economics of PTC Laboratory.

9. Environmental Biotechnology -

- 9.1 Introduction
- 9.2 Waste water treatment
- 9.3 Landfill technology.
- 9.4 Environmental sustainability.

S. Y. B. Sc. [Botany]

Paper III

Practicals based on Theory Paper I and II

Fundamentals of Plant Systematics and plant ecology (any six)

1. Study of Tools of Taxonomy – field, library and laboratory	(01 P)		
2. How to study plant family? (Description of plant in botanical terms)			
3. Study of plant families (any four and at least one from monocot)	(02 P)		
4. Botanical excursion and submission of photographs of wild plants.	(01 P)		
5. Study of ecological adaptations.	(02 P)		
A) Hydrophytes			
B) Xerophytes			
6. Study of vegetation by list count quadrat method.	(01 P)		
7. Study of Ecological instruments. (any four)	(01 P)		
8. Study of forest / grassland ecosystem.	(01 P)		
Fundamentals of Plant Biotechnology (any six)			
9. Demonstration of DNA Model.	(01 P)		
10. Demonstration of comparison of GM Plants with Non-GM Plants.	(01 P)		
(BT cotton, BT Tomato)			
11. Estimation of citric acid by assay method.	(01 P)		
12. Cultivation of Spirulina and Study of its commercial products.	(01 P)		
13. Plant tissue culture technique.	(02 P)		
A) Instrumentation, Sterilization, Media preparation.			
B) Inoculation of Explants / Meristem / Nodal sector / Embryo.			
14. Visit to biotechnology institute and submission of visit report with repect to design			
of PTC lab.	(01 P)		
15. Demonstration of synthetic seeds	(01 P)		
16. Visit to waste water treatment plant and submission of its report.	(01 P)		
Anatomy, Embryology and Palynology (any six)			

17. Study of epidermal tissue system – non-glandular and glandular trichomes, multilayered		
epidermis, typical stomata (dicot and monocot).	(01 P)	
18. Study of mechanical tissues.		
19. Study of normal secondary growth in dicot stem – Annona and Moringa.		
(Double stained temporary preparation).		

20. Study of anomalous secondary growth in Bignonia and Dracaena stem.		
(Double stained temporary preparation).		
21. Study of tetrasporangiate anther – T.S. of young and mature anther.	(01 P)	
22. A) Study of types of ovules.	(01 P)	
B) Study of germination of pollen grain on stigma (in vivo). \int		
23. Study of dicot and monocot embryo.	(01 P)	
24. A) Study of pollen grains by acetolysis method.	(02 P)	
B) Study of pollen grains by NPC observation.		
25. Observation of exine ornamentation (any five)	(01 P)	

Plant physiology (any six)

26. Determine water holding capacity (WHC), pH and moisture content of soil		
27. Determine Diffusion Pressure Deficit by using potato tubers.		
28. Determine rate of transpiration under different conditions of shade,		
wind and light.	(01 P)	
29. Demonstration Experiments. (Suction due to transpiration, Curling Experiment,		
Imbibition Pressure, Effect of root promoting hormone, Arc Indicator)	(01 P)	
30. To study the process of plasmolysis.	(01 P)	
31. Preparation of phosphate buffer.		
32. Isolation of mycorrhizal fungi of any crop plant with the help of soil dilution technique		
and Identification of any two fungal forms.	(02 P)	

N.B. Botanical excursion tours and visits are compulsory to all the students.